
How to Improve Embedded GUI
Development Efficiency Using a

Collaborative Workflow

Best Practices Using Storyboard™
Vol. 2

Best Practices for Crank Storyboard	

How to Improve Embedded GUI Development Efficiency
Using a Collaborative Workflow . 1

The pitfalls of traditional development workflows for embedded GUIs 2

Helping designers and developers work better together 5

Validating changes and enhancements on target hardware 11

Verifying system messages to and from the GUI . 15

Developing an efficient and collaborative GUI development workflow . . . 17

Best Practices Using Storyboard™ — Vol. 2

How to Improve Embedded GUI
Development Efficiency Using a
Collaborative Workflow

Taking advantage of all Crank Storyboard has to offer means
understanding its workflows and deciding how to best fit them into your
workday. While some of the practices presented here may be different than
what you’re used to, we firmly believe that the benefits of collaboration,
rapid validation, and efficiency will be more than worth it.

At any time, we encourage you to visit our Help Center and video library
for more detailed information on how to use Crank Storyboard.

What you’ll learn:

•	 Pitfalls of traditional embedded GUI development workflows
•	 Collaboration techniques between designers and developers
•	 Architecture of Storyboard applications
•	 Techniques for validating on real hardware
•	 Ways of verifying messages between the backend system and your

GUI

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

1

https://support.cranksoftware.com/hc/en-us
https://www.cranksoftware.com/learn/video-library

The pitfalls of traditional development
workflows for embedded GUIs

It makes sense to start by defining the traditional workflows performed by
design and development teams and some of the pitfalls they encounter.

The process begins in the design stage, where designers create the look
and feel of the GUI in isolation from the application developers and other
project stakeholders (engineering, product managers, etc.). Once a high-
fidelity design specification is complete, the stakeholders are engaged for
feedback before GUI application development begins.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

2

The problem with this workflow is that the user experience (UX) is
designed without direct testing and feedback of the GUI application on
hardware. This makes it challenging to uncover potential issues with the
design, performance, or UX of the application until significant work has
been put into development. The result is later-stage changes that are time-
consuming and costly in terms of engineering and design effort.

</>

START

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

3

What seems like a minor design change to one project stakeholder may
actually be a significant exercise in tearing down and re-coding, leading
to delays in getting the product to market or a less than optimal user
experience.

If your GUI application is built using a development tool that allows for
flexible and iterative workflows between designer, developer, and other
stakeholders throughout the lifecycle, you can cut down on this linear
feedback process and embrace changes at any time. All contributors can
work together as early as possible to improve the product’s GUI, validate it
on the hardware, and ultimately benefit the end-user’s experience.

CRANK SOFTWARE

APP DEVELOPER

SYSTEMS ENGINEER

UI DESIGNER

PRODUCT TESTING

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

4

Helping designers and developers work
better together

Storyboard is purpose-built to bridge the gap between design and
development in their traditional GUI development workflows. It does so
by enabling an open dialogue, or language, between both sides that begins
in the early stages of design.

The goal of an optimal GUI development workflow isn’t to force new
processes onto designers and engineering groups, rather it’s to create a way
to translate design content seamlessly into development workflows. This is
exactly what the Storyboard development framework sets out to provide.

Fostering collaboration between designers and developers requires some
understanding of the Storyboard application structure, and the conventions
Storyboard uses to import content from design files. By understanding
how content fits into the Storyboard application architecture, it’s easier to
structure your design in a way that seamlessly imports into Storyboard.

</>

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

5

BEST PRACTICE
Understand the architecture of a Storyboard application and map design elements
(screens, layers, controls) to this structure.

Picture a Storyboard-built GUI application like this, where the root node is
the application and the branches of the tree are the main screens:

Here, “Application” contains information on the resolution, color depth,
and other metadata relevant to the GUI.

Application Screen Layer Control Render Extensions

Application

Screens

Layers

Controls

Render Extensions

Application Model

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

6

Applications contain one screen at minimum and there’s no limit as to
how many you can have.

A screen must always be displayed and it contains content in the form
of layers.

Layers are a finer-grained grouping of similar elements, such as
navigation bars, popup dialogs, or the collection of elements that make
up gauges. Each layer contains one or more controls that define where
visual content (images, text, 3D objects, or a combination of them all)
is positioned and displayed.

A control contains at least one render extension, used to perform the
actual drawing of objects within the control’s area. You can define
these elements and mix and match them to create unique screens.
Controls can be empty if you so choose.

A render extension defines the basic type of content that can be
drawn, such as text, images, and rectangles.

[See our documentation and user guides to learn how to set up content
within Photoshop or Sketch for a seamless import experience]

Having a strong understanding of the structure of a Storyboard GUI
application is important for developers and designers alike. This application
structure serves as a common understanding between both parties
and allows them to think in a common way despite having different
backgrounds and skill sets. Once the application architecture is understood,
it’s easy for GUI designers to start creating content within familiar design
tools, such as Photoshop or Sketch, and importing it into Storyboard.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

7

https://support.cranksoftware.com/hc/en-us/articles/360039998292-New-Project-from-a-Photoshop-PSD-File
https://support.cranksoftware.com/hc/en-us/articles/360043111972-Sketch-to-Storyboard-Workflow

Once your application has been created, it’s much easier to build up and
structure content in a design tool for re-importing or adding additional
content. A little knowledge means you can do this quickly and easily no
matter where you are in your application development. We encourage you
to do this frequently as it streamlines your feedback loop and provides
opportunities to add behaviour to your design and test it out.

BEST PRACTICE
Use a consistent naming scheme and conventions for layers and assets in your design tool.

A best practice for maximizing the design import workflow is to develop a
consistent naming schema and conventions for the layers and assets created
with the design tool. This allows for logical mappings of elements and the
bootstrapping of simple behaviors, such as button logic, to occur once

The naming and organisation of content in the Photoshop Layers panel on the left determines
how content is named and structured using Storyboard’s Photoshop Import feature. Learn More

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

8

https://support.cranksoftware.com/hc/en-us/articles/360044677512-VIDEO-Importing-UI-design-files-from-Photoshop-into-Storyboard

imported into Storyboard. It also simplifies the design iteration process
of importing new content into the project, in particular the re-import of
changes to elements that already had behaviour defined.

We recommend that any changes to the names and structure of elements in
your design should be done consciously and intentionally after the initial
import into Storyboard — either in the tool or the design files. This will
avoid breaking the mapping between existing application content and the
design file content. For example, if you decide to retheme and rename a
button called “confirm_btn” to “accept_button”, you will need to map the
new assets to the old controls during the import process if the intent is to
replace the existing content.

Making significant changes to the design of the UI without impacting functionality of an application
in development is possible with the Sketch and Photoshop Re-Import Feature. Learn More

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

9

https://support.cranksoftware.com/hc/en-us/articles/360045122771-VIDEO-Reimporting-designs-changes-from-Photoshop-PSD-files-into-Storyboard

</>

BEST PRACTICE
Consider changes to the names and structures of design elements carefully, as this may
break the mappings created during the initial import into Storyboard.

Additionally, using Storyboard’s model Compare and Merge tools that link
seamlessly with GIT, SVN, and other version control systems, developers
can easily work in parallel to ensure that the UI can be modified, shared,
and improved by multiple contributors. Any potential issues will be
highlighted within the tool, allowing you to review, triage, and either accept
or reject them. Storyboard allows for the testing of changes made to the
GUI by simulating without the need to deploy to hardware.

BEST PRACTICE
Import and iterate the design frequently with Storyboard’s Import and Re-Import
features. Muliple users can leverage the Compare and Merge tool to work in parallel.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

10

https://support.cranksoftware.com/hc/en-us/articles/360040409111-Comparing-and-Merging-Model-Files
https://support.cranksoftware.com/hc/en-us/articles/360039999112-Revision-Control-System-Integration
https://support.cranksoftware.com/hc/en-us/articles/360044677512-VIDEO-Importing-UI-design-files-from-Photoshop-into-Storyboard
https://support.cranksoftware.com/hc/en-us/articles/360045122771-VIDEO-Reimporting-designs-changes-from-Photoshop-PSD-files-into-Storyboard
https://support.cranksoftware.com/hc/en-us/articles/360040409111-Comparing-and-Merging-Model-Files

Validating changes and enhancements on
target hardware

Regardless of how effective a simulator is, there is no better method than
running it on the actual hardware to validate how the GUI application
performs. Having a seamless method for deploying to hardware helps
you validate changes more frequently, allowing you to detect any potential
issues earlier, resulting in time and effort saved.

To test as early as possible, and with the least impact on the release cycle,
start validation on hardware when you have a skeleton for the GUI
application in place or have reached a point where animations are ready
to be added. We recommend this because development machines are
more powerful and always have access to a GPU, whereas the intended
embedded hardware may not.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

11

BEST PRACTICE
Test and validate your GUI frequently on the target hardware.

To prepare your application for deployment to hardware, you must first
configure a resource export configuration for the project that is used in
conjunction with the export packager:

•	 This configuration contains information on what assets will be
exported and in which format. This configuration only needs to be
done once (per target configuration) and adjusted only when changes
to the platform are made.

•	 The export packager allows you to choose exporting to an MPU
platform, MCU platform, or a mobile device. Each packager
has its own nuances that are covered in detail in the Storyboard
documentation.

When working on smaller embedded platforms, such as microcontrollers, you
need to rebuild and flash the system based on the exporter output. To help
streamline the export process, it’s recommended to export the application
to the RTOS project location, allowing quicker rebuilds to be performed.

Exporting to your target configuration?

The Storyboard Resource Export Configuration editor
provides the ability to create configurations for how
resources should be exported from Designer.

Storyboard Resource Export Configuration Editor

Take greater control over how and when resources should be exported from

the design environment. LEARN MORE

RESOURCES

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

12

https://support.cranksoftware.com/hc/en-us/articles/360040408451-Storyboard-Resource-Export-Configuration-Editor

When working with a microprocessor, you can use the Secure Copy
Protocol (SCP) to transfer the GUI application over the network and
have it configured to run automatically. This process of deploying the
application to hardware for testing and validation is as fast and simple as a
few mouse clicks.

BEST PRACTICE
When working with a microprocessor, use the SCP protocol for the automatic transfer
and run of your GUI application on the target.

Performance logging is a tracing and recording mechanism built into the Storyboard engine,
allowing the capture of detailed execution information about operations performed within the
engine. Learn More

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

13

https://support.cranksoftware.com/hc/en-us/articles/360040893211-Storyboard-Performance-Log-Viewer

Another benefit of exporting the configured application quickly, is
that Storyboard allows you to collect real metrics on performance and
resource consumption. When working with devices that have limited
memory, such as a single-core MCU device, early awareness of the
application’s resource footprint and performance is critical. This is
especially important when you consider the traditional alternative of
sifting through lines of code of a completed GUI application to isolate
and understand a performance bottleneck.

Storyboard’s performance logs, which contain the data surrounding
the performance of your application, can be extremely helpful. Once
generated, they can be imported into Storyboard and broken down into
multiple sections, such as rendering performance, event flow, and the
creation and deletion of elements, to make the process of fine tuning the
application’s performance a whole lot easier.

BEST PRACTICE
Use the Storyboard performance logs to baseline and optimize GUI resource footprint
and performance metrics.

Frequent testing on your hardware allows you to validate your application
as it’s being developed and gather real metrics when you need to
understand what’s happening in Storyboard. Making this is a part of
your day to day workflow ensures you’ll end up with a solid product and
efficient development processes.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

14

Verifying system messages to and from
the GUI

Once the layout of the user interface, animations, transitions, and event
interactions are complete, it’s time to inject real data into the application.
Similar to the benefits of testing on actual hardware, injecting simulated
events into the GUI application early in development helps ensure it
performs as intended in the real-world (simulated or live) before changes
become too costly.

Even if the backend application responsible for feeding data into your
GUI is not available, all you require are the events and their data structures
to start injecting. By adding them to the Storyboard project, these event
definitions are used to generate a Storyboard IO event header file that’s
used by the backend application. This creates the basis for the application
programming interface (API), or data contract, between your frontend
GUI and the backend logic. This keeps the data and event flow consistent
and allows you to reduce the integration effort when connecting your GUI
to the real backend for the first time.

BEST PRACTICE
Define events and their data structures early and use Storyboard Connector to inject them
into your application for testing.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

15

Another benefit of defining the event structures is that they can be used
to simulate data from the Storyboard Connector. Storyboard Connector
allows simulation data to be generated and injected into a running
application on your desktop or embedded hardware. This helps you stress
test the application before the live data source is ready and provides the
development team with a clearer understanding of how the GUI will
perform when it’s added to the embedded product.

How to connect data with events.

Learn how to use data-driven events to update your
embedded GUI project and export your events to a C/
C++ Header File for system engineers and developers
to use.

Using the Storyboard IO Connector

The Event Editor is used to add and edit event definitions. Learn More

Adding an Event Definition

Learn about the different ways new events are added. Learn More

RESOURCES

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

16

https://support.cranksoftware.com/hc/en-us/articles/360044677632-VIDEO-Creating-custom-events-with-the-Storyboard-IO-Connector
https://support.cranksoftware.com/hc/en-us/articles/360039998432-Adding-an-Event-Definition

Developing an efficient and collaborative
GUI development workflow

While the tools and features available within Storyboard are powerful,
they are only helpful when deliberately planned and used intentionally.
Discipline and consistency are two key pieces of creating powerful and
efficient development workflows.

By leveraging the best practices discussed in this document you will have
the flexibility to speed up GUI development, adapt to changes in design,
and improve your application validation cycle.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

17

Best Practices Summarized

1.
Understand the architecture of a Storyboard application and map
design elements (screens, layers, controls) to this structure.

2.
Use a consistent naming scheme and conventions for layers and
assets in your design tool.

3.
Consider changes to the names and structures of design elements
carefully, as this may break the mappings created during the initial
import into Storyboard.

4.
Import and iterate the design frequently with Storyboard’s Import
and Re-Import features. Muliple users can leverage the Compare
and Merge tool to work in parallel.

5. Test and validate your GUI frequently on the target hardware.

6.
When working with a microprocessor, use the SCP protocol for the
automatic transfer and run of your GUI application on the target.

7.
Use the Storyboard performance logs to baseline and optimize
GUI resource footprint and performance metrics.

8.
Define events and their data structures early and
use Storyboard Connector to inject them into your
application for testing.

How to Improve Embedded GUI Development Efficiency Using a Collaborative Workflow

Best Practices Using Storyboard™ — Vol. 2

18

https://support.cranksoftware.com/hc/en-us/articles/360044677512-VIDEO-Importing-UI-design-files-from-Photoshop-into-Storyboard
https://support.cranksoftware.com/hc/en-us/articles/360045122771-VIDEO-Reimporting-designs-changes-from-Photoshop-PSD-files-into-Storyboard
https://support.cranksoftware.com/hc/en-us/articles/360040409111-Comparing-and-Merging-Model-Files
https://support.cranksoftware.com/hc/en-us/articles/360040409111-Comparing-and-Merging-Model-Files

