
GUIDE TO

Inside

- Comparing memory types

- Framebuffer tips

- Avoiding frame rate overruns

- Understanding fonts, images & animations

Overview
Smartphones changed the way we
interact with technology, giving us
intelligent experiences in everything from
Fitbits to freezers. More recently, a perfect
storm of innovations in microchips, soft-
ware development, and energy effi ciency
has set the stage for the next revolution in
computing’s history: wearables and personal
devices.

The way we receive, use, and share data
is changing dramatically as a result. We’re
using digital means to verify who we are,
move us into action, refl ect our wellbeing
back to us, communicate with each other,
record the world around us, and control our
environments. This is no fad — wearable
technology use has more than tripled in
the last four years and global spending on
wearable devices will total $81.5 billion in
2021.

While this wearable revolution amounts
to many new business opportunities, it
also constitutes a paradigm shift in how
users interact with technology. Battery life
becomes even more important, as does
building a vivid, intuitive user experience (UX)
that consumers and professionals crave.

Understanding how memory and graphics
work to deliver those experiences is key to
winning the wearables market and building
user loyalty.

This e-book explains seven embedded
graphical user interface (GUI) concepts
that are key to getting the most out of
your target system’s memory and graphics
capabilities. From framebuffers to GIFs,
the topics presented here help guide your
software design decisions and offer useful
reference sheets for when things get busy.

We’ve also included two sections on
wearables software best practices and an
in-depth analysis of how frames per second
really matters to your application.

Get ready to fi re up your wearables UX!

“ Worldwide end-user spending
on wearable devices will total
$81.5 billion in 2021.”
- Gartner, Inc., 2021

| Overview

https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Best software practices for improving wearables UX
How do you approach designing and building a new wearables GUI? Rather than keep UX design separate from
development, it’s important to understand where they intersect to build applications that users love and want to
interact with.
Let’s look at the four ways in which effective wearable GUI development and design must adapt to address the
new challenges of this booming market segment.

Step 1: Optimize for easier navigation on small screens

To accommodate increasingly smaller devices, screens are decreasing in size. This affects the user’s ability
to access information, including locating it, understanding it, and remembering it.

Simplify navigation options
The first rule of thumb is to simplify and declutter. Users want to get quickly in and
out of the functions they need. For this, they need easy navigation. It’s a good idea to
get rid of anything in a wearable GUI that isn’t absolutely necessary. To do this: Use
simple buttons and swipes, and avoid any text input. The user should be able to gain
access to the information they want in ideally two clicks and/or swipes.

Use scrolling or wrapped menus
These help declutter the GUI since users only see one to two menu items on-screen
at a time.

Focus on glanceability
Users need to be able to glance at their wearables while in motion and get the
information they need.

Avoid high contrast and bright colors
The best way to ensure users don’t have to stare at their screens for long lengths of
time is to use minimal text in high contrast and bright colors.

Avoid serif and script fonts
Keep text highly legible by avoiding the use of serif and script fonts when pixels are
limited.

Icons instead of text
Simple icons instead of text can have a positive impact too — it’s much faster to
recognize an icon versus reading a text string.

1

2

3

4

5

6
| Overview

https://www.cranksoftware.com/industries/wearables

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Step 2: Design UX based on hardware limitations

The chip or board running a wearable device is going to be more limited in performance than a desktop or even a
typical embedded processor. Plus, to be useful on a person’s body, it must stay cool and use little power. And for
that, choosing the right hardware is critical.
Not all GUI development teams have input into hardware choice, but they should have a say in its functional
requirements, which may include everything from 3D gestures through haptic feedback to Wi-Fi connectivity.
It’s best to carefully consider processor-intensive tasks as needed. While animations can provide an effective and
rich UX, they may consume more cycles and power than you realize. It’s good practice to use CPU and memory
performance measurement tools to determine exactly how resources are being consumed and tweak animations
accordingly (such as by reducing the number of frames or the complexity of the images). Something else to keep
in mind: these high-intensive tasks can also make a device run extra hot. No one wants users burned – literally.
Also consider using hardware acceleration, where available, to offload the CPU from performing these high-
running tasks.

Step 3: Use memory judiciously

Memory and flash storage in wearable devices is a tricky balancing act between capacity and price. The bigger
the chip, the more expensive it is. Both resources must be used judiciously, and GUI development teams
(as one of the biggest consumers of both RAM and flash) should be highly considerate of their usage.

Step 4: Make every minute of battery life count

While the modest form factor of a wearable device makes it easier to keep on the body, a small device
contains a small battery, which makes energy a precious resource. Embedded GUI development teams
must pay careful attention to make every minute of battery life count.

1

2

1

2

Consider replacing high-definition images with smaller resolution images

You can also adopt higher compression formats or, better yet, use vector graphics that designers can scale
easily during the UX design process and developers can rasterize to consume much less memory and
processor cycles on the target. GUIs can still be attractive with solid shapes and fills or gradients instead of
custom-crafted PNGs.
Also consider dropping down screen and GUI asset color fidelity, if further memory is required.

Ensure the application frees up as much memory as possible

Free data lists, terminate applications, and flush caches as soon as they’re not needed, but first profile
your memory use and run user UX tests to determine which of these techniques won’t impact the device’s
perceived “snappiness”.

Use sleep mode as much as possible

The most obvious strategy for saving power is to use sleep mode as much as possible, only waking a device
when there’s an event, such as a button push or physical movement. It’s important to have a GUI framework
that can create code that’s close to the metal, for the sake of battery life as well as a device’s responsiveness
and memory consumption. The more efficient the code, the less power it will draw.

Dim the backlight when not active or in low light

Another thing to keep in mind is how a GUI interacts with screen technology. With an LCD display, the most
controllable power draw is the screen’s backlight. Dimming the backlight when not active or in low light can
save a lot of juice. With an OLED or AMOLED screen, there is no backlight. Instead, each pixel is its own LED
(light-emitting diode). That means white and bright colors draw much more power than black and dark colors.
A dimming layer or muted design palette can help achieve the same effect, to reduce the brightness of the
GUI when the screen isn’t being actively used. Both backlight and dimming strategies have the added bonus of
avoiding display burn-in, which happens when high-contrast images in full-power mode end up leaving a ghost
shadow.

| Overview

https://www.cranksoftware.com/platforms/hardware
https://blog.cranksoftware.com/memory-optimization-considerations-for-embedded-graphics-applications-and-user-interfaces
https://blog.cranksoftware.com/what-is-the-future-of-wearable-app-development

WATCH NOW ‣

https://blog.cranksoftware.com/memory-optimization-considerations-for-embedded-graphics-applications-and-user-interfaces

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Memory
type Nature Read

access time
Write

access time
Power

consumption
Use

cases

Flash Persistent Fast Slow Low
Application code, persistent data,

asset storage

RAM Dynamic Very fast Very fast High
Application stack, heap, variables,

framebuffers

Cache Dynamic Very fast Very fast High
Usually controlled by the OS to

speed up memory access

• Flash memory typically has speeds fast enough
to manage the storage of image assets, font
files, and videos but not fast enough to perform
dynamic operations like graphics rendering and
manipulation of application data. Flash memory
is made of solid-state chips that run slower
than RAM but do not require battery power to
maintain data persistence.

• RAM has very fast access times and is used
for dynamic content, such as animations,
framebuffer, font rendering, and read/write
operations from the CPU. RAM uses storage
cells that require a fresh electronic charge
every few milliseconds to maintain data,
directly impacting the battery life of your
wearable device.

• Cache memory is a specific application of RAM
that’s located very close to the CPU. This is very
fast, and typically very expensive memory that’s
used to store instructions and data that the
CPU is likely to use repeatedly in the immediate
future. Cache operation is usually outside your
control but it’s a good idea to understand its
behavior on your system to optimize its use.

Flash memory is used primarily for storage while
RAM is typically used for dynamic operations on
data retrieved from storage. Flash is considered
non-volatile memory, in that data is stored even when
the device’s power is off. RAM, on the other hand, is
volatile, maintaining data only when power is applied
to the memory cells. Understanding and accounting

for the different memory requirements of your
wearable application is critical. Your choice between
using system-level memory (heap, stack, and static
code) and hardware-level memory impacts graphics
performance, directly affecting UX and the market
success of your GUI.

Flash vs. RAM

Comparing memory types

| Memory

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

3D graphics

Wearables that require 3D graphics commonly use
two additional buffers: Depth (or Z-buffer, used to
specify depth of objects) and stencil (used to limit
render areas).
In these cases, you need to include additional
bytes per pixel for each buffer:

In embedded devices, framebuffers are a
contiguous block of memory that contain the color
data for each pixel of the display’s resolution.
A minimum of one framebuffer is required to
display graphics to the device’s screen. The display
resolution and color depth (16 or 32-bit) determine
how much memory you require to allocate for your
buffer(s).
Framebuffer memory is usually allocated to the
heap in RAM.

16-bit
display

32-bit
display

324px

394px

(324 x 394) x 2 = 255,312 bytes = 255 kb (416 x 416) x 4 = 692,224 bytes = 692 kb

416px

416px

32-bit
3D display

(416 x 416) x 8 = 1,384,448 bytes = 1,384 kb

416px

416px

32-bit color buff er + 32-bit depth/stencil buff er = 8 bytes per pixel

16-bit color depth = 2 bytes per pixel

32-bit color depth = 4 bytes per pixel

Framebuff er

Calculating memory requirements

Framebuffer memory required = display resolution x bit color
(bit color is the number of bytes per pixel)

| Memory

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

There are other considerations in real systems, such as whether the framebuffer fits into the available RAM block,
choosing to allocate the stack to the fastest RAM, etc., but the key to remember is:

Fast RAM is better for frequent and repetitive data read/writes, such as the stack,
framebuffer, and common images and fonts.

Many MCUs offer different types of RAM, each with their own characteristics in terms of size and speed. Your
framebuffer strategy should take these characteristics into account, to improve UX.
If only one framebuffer was used and allocated to a single block of RAM, users would see elements being
composited in real-time as the screen pulls from the same location that the application is using — an undesirable
user experience. To avoid this, wearable applications typically use multiple framebuffers to render to the screen,
flipping between those that are used for compositing (not visible) and the one that’s being directly used by the
screen.
There are many strategies for flipping between framebuffers (such as back buffering and triple buffering) but in
terms of memory usage, two important considerations must be factored into your memory model:

Consider this simplified example of two memory blocks (faster SRAM and slower SDRAM), and two
framebuffers, one for compositing and one for the screen to pull from.
As compositing requires many reads/write cycles from memory to assemble the screen, and pushing to the
screen requires only one write cycle, the best allocation for performance (assuming no other constraints) is:

• Framebuffer 1 maps to SRAM block 1
• Framebuffer 2 maps to SDRAM block 2

128 kb
faster

256 kb
slower

SRAM block 1

many reads/writes to render

SDRAM block 2

one write to update

MON 04-11 MON 04-11

11:01

framebuffer 2
(on-screen)

framebuffer 1
(compositing off screen)

Selecting framebuffer memory

1
2 Compositing requires many read and write cycles, impacting performance and battery life

More buffers require more memory space

| Memory

WATCH NOW ‣

https://www.youtube.com/watch?v=MQcT_t_Jc9s

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

When it comes to embedded GUI development, the 60
frames per second (FPS) watermark is synonymous
with ῾smooth´, ῾beautiful´, and ῾fluid´. Developers and
tech-savvy users talk about 60 FPS as the gold standard
for screen updates while vendors promise that only their
platforms will be the ones to help you achieve it.
When was the last time an end-user actually noticed the
frame rate of their device? More likely, they complained
about slow screen transitions or jittery animations and
they may have attributed it to FPS without knowing the
actual causes. Most users don’t care about frames per
second specifically; they care about user experience
(UX) and how often they need to plug in their devices.
These factors make 60 FPS an incomplete goal. It’s not
just about achieving the number, it’s about managing
CPU workloads without the user noticing it.

There’s debate over whether we can actually tell the
difference between higher frame rates. Some say
that the human eye can perceive only 30 frames per
second while others state that human physiology is
capable of detecting up to 1000 FPS. The behavior
that most agree on is best explained by these two
quotes from PC Gamer:

More often than not, high frame rate claims are
taken from applications designed to achieve an
arbitrary watermark, not reflect the reality of real-
world systems.
Here are some examples of the design decisions
made in the name of achieving 60 FPS:

How important is 60
frames per second?

Can the human eye see 60 FPS?

Consider the reason why we love 60 FPS — it’s
essentially an historical artifact from many years ago.
Older NTSC televisions ran at 60 Hz because it was
easier to synchronize that type of video signal to the
60 Hz AC power the devices ran on. People got used
to the look and feel of this frame rate and now, users
expect it on every screen they interact with.
Understanding the psychology of why we want 60 FPS
for our embedded devices is part of the story. The
other is to consider what vendors and manufacturers
do to achieve it.

Is 60 a good FPS?

“The first thing to understand is that we perceive different
aspects of vision differently. Detecting motion is not the same
as detecting light. Another thing is that different parts of the
eye perform differently. The centre of your vision is good at
different stuff than the periphery. And another thing is that
there are natural, physical limits to what we can perceive.
It takes time for the light that passes through your cornea
to become information on which your brain can act, and our
brains can only process that information at a certain speed.”

“The whole of what we perceive is greater than what any
one element of our visual system can achieve. This point is
fundamental to understanding our perception of vision.”

- PC Gamer, 2017

Raw file formats used for images and
animations versus the compressed formats that
many developers use to save on storage space

Minimal inter-process communication or events
handling between the backend software and the
GUI

No complex calculations or algorithms that are
usually required for applications such as maps
and voice assistants

Use of hardware and peripherals with fast
access times that aren’t necessarily available
to all projects and budgets (although this is
becoming less of an issue in the MCU space
as silicon vendors are releasing more powerful
products, like this NXP webinar explains)

Measurements look at the screen’s refresh
 rate, not the number of times the application
rendered to the screen.

1
2
3
4

5
| Graphics

https://www.cranksoftware.com/storyboard
https://www.reddit.com/r/pcmasterrace/comments/41oyko/the_myth_of_eyes_can_only_see_30fps/
https://www.pcgamer.com/how-many-frames-per-second-can-the-human-eye-really-see/
https://www.pcgamer.com/how-many-frames-per-second-can-the-human-eye-really-see/
https://blog.cranksoftware.com/memory-in-embedded-uis-optimizing-image-graphics-to-save-costs-part-2
https://blog.cranksoftware.com/memory-in-embedded-uis-optimizing-image-graphics-to-save-costs-part-2
https://info.cranksoftware.com/resources/webinar/how-decoupling-communication-between-your-user-interface-and-system-logic-can-lead-to-improved-ui-development
https://info.cranksoftware.com/resources/webinar/how-decoupling-communication-between-your-user-interface-and-system-logic-can-lead-to-improved-ui-development
https://info.cranksoftware.com/resources/webinar/creating-exceptional-wearable-ux-on-the-nxp-imxrt500

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

How to optimize FPS

The “right” FPS for embedded applications is the one that creates the best user experience and minimizes
power consumption within every frame. The best embedded UX is achieved by rendering the designer’s intent
for screen elements and behavior within the boundaries of a frame. In the 60 FPS case, this means completing
the necessary processing and rendering within 16 milliseconds (ms). The definition of “necessary” depends
on the application but generally, this does not require the entire screen to be re-rendered every frame. As
workloads consume processor cycles and power, only changing elements should be rendered.
Always ask yourself:
What is required of the system and when must it be done?
From there, you can tune up or down to achieve the desired FPS.
Here are two steps to consider when determining your FPS optimization strategy:

Does refresh rate affect FPS?

Refresh rate can dramatically impact frames per second. First, a screen running at a 60 Hz refresh rate has
little to do with the application workloads put upon the CPU and GPU. The screen runs as it runs. Second, if the
application is refreshing the entire framebuffer at the same rate as the screen, serious consideration must be
made as to why this is so. Consuming precious processor and memory cycles should not be taken lightly, and
many applications do not actually require a full-screen refresh at 60 Hz.
Is it better to have a smooth, efficient, and slick looking GUI, or is it better to make sacrifices to hit 60 FPS?

Here are two examples of how to minimize
workloads for common GUI elements:

• Button up/down — if the design requires a
two-state button effect, the application can
render the down state in one frame and the
up state in another. This requires only two
frames in total.

• Animations — if a screen update only requires
a 500 ms animation, an application running
at 60 FPS doesn’t need to consume cycles for
the whole second. It can render that element
in 30 frames and either sleep or do other work
for 30 frames (500 ms = half a second = 30
frames).

R
ea

d
 f

ro
m

 m
em

or
y

R
en

d
er

W
ri

te
 t

o
fr

am
eb

u
ff

er

P
u

sh
 t

o
sc

re
en

S
le

ep

S
le

ep

Developers have a choice as to what to update in the
framebuffer: The entire screen or just the changed
elements. It may seem easier to render the whole
screen every frame but this requires CPU cycles and
power to perform.
The clock to the right changes every second but only
the rightmost digit changes for every nine second
period. Rather than update both the static and dynamic
elements every second, it’s far more efficient to update
the framebuffer location that contains the rightmost
digit only, saving time and CPU power.
These examples demonstrate a “minimum rendering
workload” philosophy, allowing the system to perform
other tasks during the frame and second, and enriching
the UX.

11 17 01
Static Dynamic

2

1 Only render when required

Render only what's required

| Graphics

https://www.cranksoftware.com/storyboard/capabilities/managing-project-iterations
https://www.cranksoftware.com/storyboard/capabilities/managing-project-iterations

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Frame rate
Frame rate, measured in frames per second (FPS),
is the speed at which the wearable device’s screen is
updated by the system. Frame rate has a significant
impact over user experience as the smoothness of
image rendering, video, and animations is directly
dependent on how well the system maintains visual
updates per frame.
60 FPS is typically the goal for wearables but there
are common misconceptions around this number
discussed below.

How it works

Updating the screen requires processor resources and time:

If the amount of processor time needed to update the screen exceeds the frame time (overrun), the graphics
might jitter, freeze, or not update at all. A common misconception is that a higher frame rate makes
animations and transitions run smoother, however, if the system can’t keep pace, it’s likely to drop frames.

One second

60 fps

24 fps

 How to avoid frame overruns

1. Update the screen only when necessary. For example, if the user action is to press and release a button, this usually
requires a two-frame update only (down state, up state) with no need to redraw
up to 60 frames.

2. Avoid full screen updates when you can and update only those elements that change. For example, a digital clock
only requires the seconds digits to update frequently while the rest of the display can remain unchanged.

3. Reduce the amount of alpha blending, which can be very processor intensive.

| Graphics

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Image formats
Different image file formats have different
implications on storage space and
computational overhead at runtime. Raw
formats (like TGA) contain all the image data
without any type of compression algorithm
applied to it, while compressed formats (like
PNG, JPEG, BMP) utilize encoding to reduce the
file size.

How it works

As raw files contain all the uncompressed image data, the screen can pull these directly from storage.
Compressed images require decompression into a format usable by the screen, incurring a processor cost and the
need for a temporary, or scratch buffer to store the intermediate artifacts:

Image format Memory source Scratch buffer (cache)

Raw Flash, as these files can be copied directly to the screen in
one operation

N/A

Compressed RAM, as these files require multiple operations to decompress from storage (writes to
the scratch buffer) and be retrieved by the screen (reads from the screen buffer)

Balancing the costs of RAM vs. flash depends on the project but in general:

In some cases, systems use hardware acceleration or other specialized features to reduce or eliminate the need for
your own decompression path. To avoid repeated overhead costs, systems typically cache decompressed images
(scratch buffer) for the screen to pull from as needed.
There also tends to be a difference between MCU and MPU deployments: As there is no filesystem to manage
access, MCU applications commonly use raw image formats versus MPU-based applications that can take
advantage of the optimized access times and capabilities of a filesystem.

TIFF

EPS PSD

SVG GIF

BMP JPG PNG

RAW

TIFF

EPS PSD

SVG GIF

BMP JPG PNG

RAW

Source Scratch buffer
(RAM) DisplayMemory

Processing

Specialized hardware

Decompress

Copy to framebuffer

Push to framebuffer

| Graphics

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Rendering fonts
Strings are rendered to the screen as a series
of glyphs (or small images) extracted from the
characters in a font file. There are two types of font
files, true type (TTF) and open type (OTF). A font
engine is typically used to render the font file data
into glyphs that are stored in cache and pushed to the
screen. These glyphs remain in cache and used when
needed, avoiding the need for re-rendering.

How it works

Avoiding the use of RAM

Caching font data requires RAM and computational costs. To avoid consuming resources on low-RAM
systems:
1. Before deployment, pre-render your font glyphs into Bitmap images

2. Store the Bitmap images in Flash or other type of non-RAM storage

3. Push the Bitmap images directly from storage, bypassing the need to use RAM

Pre-rendered Bitmap images require storage space, with one glyph needed for every font style and every size:
Roboto font at 18-pt, 48-pt, and 70-pt = 5.6 MB flash storage (approx.)

Preserving storage space when pre-rendering fonts

ABC ABC
ABC ABC

Display
Scaling Grid-fitting Rasterizing

Storage Font engine Cache

A
B

C

> > >
A

B
C

Font engine loads file into
cache for rendering

Font engine renders
data into glyphs
stored in cache*

Glyphs (or images) are
pushed to the screen

when needed

*Requires RAM
to process

1. Store less bits for the alpha map

2. Don’t pre-render unnecessary characters (e.g., a numeric keypad doesn’t need letters)

| Graphics

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

Flipbook style

A flipbook style animation requires pulling all the files
from storage, decoding them if compressed, and
pushing each file in sequence to the screen at the
desired frame rate (t).

Benefit: This approach uses less memory to cache
the files (RAM) over the application life cycle.
Disadvantage: The downside is that multiple files
are required to be stored, potentially taking up more
space.

Animated GIF

An animated GIF stores a stream of images in a
single file, with time delays specified between them
(t). Once started, the animated GIF plays each frame
once, unless the file contains looping data to repeat
the animation a specified number of times.

Benefit: All image information is encapsulated in one
file, generally consuming less space than if the files
were split out individually.
Disadvantage: The downside is that this requires
more memory to cache (to process all the frames at
once) and the animation cannot be started from any
frame other than the first.

• Video requires the inclusion and management of a player within the application
• Tends to be more difficult to share between processes without consuming more memory
• Difficult to render the video to multiple locations on the screen at the same time without consuming

too much memory

Animations: Flipbook vs. animated GIF vs. video
When it comes to running animations on wearable screens, there’s a choice between loading separate image
files in sequence or loading a single animated GIF. Each approach has implications and tradeoffs:

Video

An alternative to both these formats is to use video, however this has its own implications:

‣

frame-1.png frame-2.png frame-3.png

‣t

‣t

‣

frame-1.png frame-2.png frame-3.png

‣t

‣t

A flipbook style animation pushes each file in sequence

An animated GIF loops data to repeat the animation

| Graphics

WATCH NOW ‣

READ NOW ‣

WATCH NOW ‣

READ NOW ‣

https://blog.cranksoftware.com/memory-optimization-considerations-for-embedded-graphics-applications-and-user-interfaces
https://blog.cranksoftware.com/memory-in-embedded-uis-optimizing-image-graphics-to-save-costs-part-2
https://blog.cranksoftware.com/a-proven-framework-maintaining-a-responsive-embedded-gui-with-ui-task-prioritization
https://info.cranksoftware.com/resources/webinar/creating-exceptional-wearable-ux-on-the-nxp-imxrt500

O
V

E
R

V
IE

W
M

E
M

O
R

Y
G

R
A

P
H

IC
S

LE
A

R
N

 M
O

R
E

| Learn More

Try smartwatch demo GUI images for yourself
Download and run these self-contained, sample executable images — built in Crank Storyboard — on your
hardware, and see what your GUI possibilities are.

Processor: NXP i.MX RT 500

Operating system: FreeRTOS

Resolution: 390 x 390

Rendering: VGLite

Processor: STMicroelectronics
STM32L4R9

Operating system: FreeRTOS

Resolution: 390 x 390

Rendering: DMA2D

1000 Innovation Drive, Suite 100, Ottawa, ON, Canada K2K 3E7
1 (613) 595-1999 | info@cranksoftware.com | cranksoftware.com

© 2021 Crank Software Inc. All rights reserved. No part of this publication may be reproduced without the
prior written permission of Crank Software Inc. While every precaution has been taken in the preparation of
this document, Crank Software Inc. assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein. Specifi cations subject to
change without notice.

NXP STMicroelectronics

DOWNLOAD ‣ DOWNLOAD ‣

https://info.cranksoftware.com/platforms/demo-images/nxp/imx-rt500
https://info.cranksoftware.com//platforms/demo-images/st/stm32l4r9

