

What to expect from this e-book

Four critical consumer
expectations that open wallets

Create successful products by taking
these consumer preferences into
account.

Two sure-fire ways to break
into the product sweet spot

Adapt existing designs to create
products with mass-market appeal
and high-margin pricing.

Two ways to meet the relentless
pressure to deliver faster

Understand the importance of
streamlining the development
process and ways to do it.

How to determine if your
product is a good candidate

Decide for yourself if these strategies
make sense for your product.

Selecting silicon and software
to differentiate your product

Capitalize on consumer preferences
and overcome time-to-market pressures
through component selection.

Key takeaway

Learn what it takes to turn great ideas
into polished, consumer-ready products.

2|

INTRODUCTION

The face of consumer electronics is evolving fast. From
smart thermostats to connected kitchen appliances,
today’s products are expected to deliver the same
smooth, intuitive interfaces that users experience on
their phones and tablets. Consumers no longer settle for
clunky screens or confusing controls—they expect touch-
friendly, visually polished interactions everywhere.

But for product teams and GUI developers, meeting these
expectations isn’t easy. The challenge? Delivering sleek,
responsive interfaces on cost-sensitive hardware without
sacrificing performance or extending timelines.

 This ebook explores the next wave of consumer
products, the hurdles developers face—like optimizing for
resource-constrained devices, integrating with modern
design workflows, and accelerating time to market—and
practical ways to build GUIs that feel high-end while
staying efficient and affordable.

Whether you’re designing your first connected product
or scaling up your product line, you’ll find strategies
here to help you turn tough constraints into competitive
advantages.

3|The Embedded GUI Playbook

4|

PART 1

Four critical consumer expectations that open wallets
UX leaders Apple and Google have forever changed consumer
expectations. Products must now be simple and user-friendly
regardless of device or platform. While these two companies
have loyal followers, in general people are beginning to
care less about the brand and more about the experience.
Data from Forrester shows that improving customer
experience improves profitability; in fact, the revenue growth
of customer experience leaders is 5.1 times that of laggards.
A case in point is Uber: the company has been through one
scandal after another yet they remain successful because
people love the overall experience. Let’s examine four of
today’s biggest consumer expectations and develop some
guidelines to follow in order to make your next consumer
electronics product wildly successful.

1 	� Create products with both functionality
and design in mind

In the good old days when function trumped form, consumers
had to live with difficult-to-use products like the much-
maligned VHS recorder. The reason TiVo killed the VHS was
it was well-designed and dead simple to use. Today, consumer
preference for a product is increasingly determined by the
quality of the user experience. Designers and developers
who work closely together to create products that are at
once attractive, functional, and easy to use are behind
some of the world’s most successful products.

In order to strike that perfect balance between form and
function, you need to have designers engaged from the very
beginning of the product development process. Since critical
design choices may significantly morph your product, you
shouldn’t wait until the product requirements are done before
you start working with the design team or you risk wasting
time or building suboptimal products. We also recommend
facilitating a smooth and efficient workflow between designers
and development teams with both people-focused activities
like team building and technological solutions like designer-
friendly tools.

Quite simply, design can no longer be an afterthought.

Apple was not the first MP3 player to hit the market but, with its sleek design
and intuitive interface, it quickly dominated all other rivals.

https://go.forrester.com/blogs/make-the-case-that-cx-transformation-is-both-important-and-urgent/

5|

2 	� Include UI screens that are attractive and
intuitive

Now that consumers have continual access to an amazing UI
in their pockets, they’re less tolerant of lukewarm experiences.
They may not always be able to articulate their preferences
but know how to vote with their wallets.

A good example is the growing popularity of the single-serve
coffee machine. Price comparison shows a unit of K-cups
(a single-serve of coffee grounds in a small filter) commands
nearly five times more than a unit of traditional ground coffee.

One of the reasons these coffee machines rank in the fastest-
growing private-label food and beverage category despite
the hefty price tag is their full-color LCD. Consumers see
these displays as a valuable feature and are increasingly
making purchasing decisions based on their availability.

Millennials were among the first to embrace digital
technology. They grew up with screens and were key
drivers behind the rise of smartphones, apps, and
connected devices. But now, things are changing,
according to a recent Social Values research, they’re second
only to Gen Z in their enthusiasm for new tech.

As technology keeps evolving, many Millennials feel
overwhelmed with- issues like digital burnout, data privacy,
and online security. While they still value innovation, they’re
becoming more cautious and slower to adopt new tech
products.

 In an ever-digitized world, brands and companies need to
recognize this shift. It’s important for them to balance exciting
new features with thoughtful design that respects users’ time
and privacy. To build trust and long-term relationships with
Millennial consumers, businesses must understand both the
benefits and the downsides of connectivity.

Consumers see full-color displays as a valuable feature and are increasingly
making purchasing decisions based on their availability.

https://environics.ca/insights/articles/millennials-are-conflicted-about-technology/

6|

3 	� Plan for multi-modal input

Of course, there are other ways to interact with a product than
through a screen. companions in our daily lives. Thanks to big
leaps in AI and language understanding, in near future these
assistants can handle complex tasks, have natural conversations,
and even predict what you might need based on your habits. For
example, Google’s Gemini Live, offers capabilities such as real-
time voice translation and sophisticated question answering.

Moreover, the integration of voice assistants with Internet of
Things (IoT) devices is transforming homes. Voice assistants
like Siri and Apple intelligence lets you control lights, locks,
and appliances just by speaking. In Automotive segment
Volkswagen’s integration with ChatGPT through its IDA voice
assistant allows drivers to interact with their vehicles using natural
language, making the driving experience more enjoyable.

The future of voice assistant has immense potential with
Integration with VR, MR, AR technologies, and AI algorithms. As
technology continues to evolve, voice assistants are becoming
part of our day to day lives—making it easier, more efficient, and
more connected.

Reasons consumers are attracted
to products with color LCDs

	• Modernity: Full-color dot-addressable screens
are fresh, while custom-designed LCDs are
reminiscent of old technology like clock radios

	• Capacity: The flexibility of a product with an
intuitive full-color screen makes the product appear
to do more than its fixed-function LCD counterpart

	• Simplicity: Features can be revealed as needed
(including usage guides or servicing instructions)
while products that have many buttons or LEDs can
confuse a user by presenting all options at once

	• Elegance: End users have increasingly sophisticated
design ascetics, making them prefer products with
appealing, attractive, and artful screens

Consumers love the tactile experience of interacting with
sophisticated touch-screen displays.

Use a tool that can bridge to C/C++
to maximize your ability to expand in
the future.

7|

We recommend designing with multi-modal input in mind—
even if your product doesn’t immediately require voice or device
connectivity, it should be able to accommodate it. This means
designing your product for expansion, exposing APIs for remote
functionality, and planning to provide over-the-air updates.

4 	 Plan for scalability

If the best products provide an excellent user experience,
the best selling products also provide excellent value for
the money. With so many forces attempting to get a share
of the consumer wallet, you need to build products that are
“worth it”, and that usually means a bill of materials that’s
as low as you can manage.

While it may be accepted practice to create an initial line
of products with high prices (and high margins) to test out
market acceptability and build up cash reserves, this is really
a short term strategy. Tesla is a perfect example of this
approach: the company started with a pricey Model S
before releasing the Model 3 for middle-class buyers.
Companies that don’t make the transition to commodity
pricing are often stuck creating a niche product for a
limited market instead of breaking into the mass market.

The solution is to plan for scalability. From the electronics
point-of-view, you should choose a microprocessor line for
your initial product that’s part of a product family with lower
price-point cousins. Use a tool set that isn’t inherently tied
to beefier processors and that can scale into smaller—yet
still capable—microcontrollers. Finally, plan your RAM and
Flash consumption carefully so that you’re not trapped into
an architecture that is resource heavy and can’t be scaled
down. These considerations will help ensure you’re building
a product that could run on a lightweight microcontroller even
if your initial design hasn’t yet taken the necessary steps.

Use a tool set that works with
microprocessors and microcontrollers
to target products at all price points.

Build your niche-market product with scalability in mind so you can move
from a high-end microprocessor to a lower-priced microcontroller with ease.

8|

PART 2

Two ways to meet the relentless pressure to deliver faster
Everyone knows that the innovation treadmill is leading to
ever-shortening development cycles and increased competition.
The big question is: how can manufacturers compete under that
relentless pressure to deliver faster and faster? Just as critical is
maintaining quality at this break-neck speed.

Since the software development timeline is the single biggest
factor that inhibits speed to market, let’s take a closer look at
ways to reduce it.

1 	 Streamline design and development

As discussed, design is a key part of today’s product success.
But the normal design-developer cycle is often inefficient.

Designers often use one set of tools (such as Adobe
Photoshop) to craft the look and feel of a UI and another set
for prototyping (like Adobe Experience Design). Developers
then use a third toolset (often C/C++) to implement the final
product. All of these changes in tools, process, and workflow
suck up time and introduce errors. Thankfully, there are tools
on the market that can help create a streamlined design-
development process.

The best development tools are ones that are simple enough
for the designer to create a prototype UI but deep enough for
the developer to produce complex logic, include pre-existing
libraries, and modularize components.

As always, your mileage may vary—depending on the skills
and breadth of your team—but keep in mind that your team’s
current skill level in various tools often changes when principle
members move on or you need to staff up.

If your team doesn’t already use a tool to streamline the design-
development process, you’ll want to seriously consider one.

Use a tool that streamlines the design-
development workflow to minimize
wasted effort.

Build app from
Photoshop/ Figma
assets with UI tool

Design + Development

Streamlined design model (new)

Design UI
in Photoshop/

Figma

Debug and
optimize on
hardware

Run usability
studies

Refine throughout

Design UI
mockups in
Photoshop

Understand
and refine

Design

Traditional design model (old)

Development

Usability
studies

Translate UI
mockups into

executable code

Build application
using translated

UI screens

Debug and
optimize

Test on
embedded
hardware

9|

2 	 Architect code for reuse

If you’re building a one-off product, code reuse doesn’t
matter. That being said, you almost never use good code only
once. Initial releases invariably get updated with new features
and bug fixes, one product can lead to a family of products,
and reliable code from older projects is often implemented
into new incarnations. So if you’re writing code with a plan
to throw it away, you’re doing it wrong.

A rough guideline is that writing reusable code takes at least
three times longer than writing single-purpose code. Not
everything however needs to be built for reuse or you may
end up over-engineering your code and adding unneeded
complexity. If code is written too generically but only used
once, it’s a waste of development time and code overhead.

10|

But somewhat paradoxically, code reuse is very important
to rapidly producing reliable products, even with the extra
time required to make code reusable. You can always get
one product to market quickly. With reusable code you
can get subsequent products to market even quicker.

Experienced developers constantly make subconscious
trade-offs about the architecture of the software they’re
writing—which parts are likely reusable and deserve extra
attention. It pays to discuss, and incorporate reuse guidelines
into your team workflow.

Finally, use a methodology that separates the UI logic from
the business logic. Doing this will allow common visual
elements and themes to be leveraged across products
and platforms, making it easier for you to build derivative
products. Ensure your UI tool of choice makes this simple.
Your development staff shouldn’t constantly fight against
the tool to implement a clean MVC (model view controller)
paradigm.

Ensure your UI tool can cleanly separate UI
logic from business logic in order to leverage
visual elements and themes across projects.

Allowing designers and developers to use the same tool eliminates
disconnects and rework.

Top things to consider when choosing
a design-friendly UI tool

	• Scripting for simple understanding by designers
and speed of creation by developers

	• Ability to invoke C/C++ code and libraries from
within the UI environment

	• Flat tool hierarchy with easy learning curve

	• Easy integration with existing design tools

	• Ability to manage round-tripping design assets

	• Comprehensive Component Library (ready-to-
deploy) for developers

	• Reusable Component Library to implement design
changes faster

	• Effortless UI updates with static data control

11|

PART 3

Selecting silicon and software to differentiate your product
If your component evaluation process is like the majority,
it can be overwhelming with all the comparative options,
and rarely is there a single right choice. Rather than building
a comparative chart, you should be laser focused on
the factors that will allow you to capitalize on consumer
preferences and overcome competitive pressures. Let’s
start with a look at hardware.

Hardware

While full-featured microprocessors have traditionally been
the solution for complex designs, microcontrollers have been
steadily gaining power and capability and have spawned a new
category of crossover microcontrollers (see sidebar).

These crossovers are excellent choices for many consumer
electronics products, because they provide a high level of
sophistication at a much lower price point.

In fact, they sport many of the same features. Yet they
have few of the frills that are standard fare on application
processors like memory management units, multiple cores,
on-board GPUs, floating point units, and so on. But make no
mistake, they can still pack a lot of power into a small chip—
enough to handle all but the most demanding designs.

Crossover Microcontrollers
MCUs are increasingly pushing into low-end MPU
territory, offering more performance, memory, and
connectivity—while still retaining their low-power
efficiency. With higher clock speeds, multi-core
designs, and built-in wireless options, modern MCUs
can now handle tasks like real-time connectivity,
advanced peripherals, and even lightweight machine
learning. This evolution lets developers deliver smarter,
more responsive products without sacrificing battery
life or driving up costs, making MCUs the go-to choice
for today’s connected consumer devices.

Prioritizing hardware selection criteria
based on product requirements

Graphics supportFunctionality and design

Graphics support

Attractive screens and UI

CPU horsepower

CPU horsepower

Multi-modal inputs

Wide array of interfaces

BOM cost

Excellent price point

Size of on-board memory

Standardized instruction setStreamlined design
and development

Standardized instruction set

Reusable software

Scalable product family

To support these features... Look at these criteria...

12|

The really good news is the price of a crossover micro-
controller is usually significantly less than a low-end
application processor. With RAM and Flash on board the
microcontroller, crossovers are often able to remove the
cost of additional chips from a design. Depending on which
RAM and Flash chips are eliminated, a crossover micro can
reduce cost from $4 to $40 (sometimes more), which is
significant even on the lower end.

This substantial price advantage is why we’re looking at
crossover microcontrollers in this e-book.

How do I pick the right hardware?

We’ve taken the consumer and competitive factors, translated
them into the most important hardware features, and created
the chart at right to help you decide which hardware is best
for your project. This list isn’t exhaustive but should get you
thinking. For instance: if you want your product to appeal
to millennials and intuitively communicate the functionality it
houses, your hardware better have fantastic graphics support.

If you want to create a product with mass-market appeal,
keep on the lookout for chips that minimize your BOM cost—
such as ways to eliminate external SDRAM.

We suggest using this chart to review the features of each
microcontroller. We’ve started you off by doing this for a few
of today’s popular ones in the table on the following page.

Microcontroller comparison

Processor
attribute1

NXP
iMXRT595

ST Microelectronics
STM32H7XX

Renesas Electronics
RA8D1

Espressif
ESP32-S3

Graphics
support

Acceleration Cadence Fusion F1 DSP,
Vivante GCNanoLite-V GPU

DSP instructions, double-
precision FPU

Integrated Graphics
LCD Controller, DRW

Single-precision FPU

Screen 1024 × 480 1024×768 1280×768 Up to 800×6002

CPU
horsepower

CPU frequency 300MHz Cortex M7 up to 600 MHz 480 MHz 240 MHz

CoreMark 3020 3224 3000 1181

Wide array of
interfaces

Peripherals USB, I2C, UART, SPI, CAN,
SDIO, FlexIO, MIPI-DSI, I3C

USB (FS/HS), Ethernet,
CAN FD, I2C, UART, SPI

Ethernet MAC, USB 2.0
High-Speed, CAN FD,
SDHI, I3C

USB OTG, SPI, I2C, UART, I2S,
CAN

Audio I2S, dual DMICs, stereo
codec, audio PLL

I2S, SAI, DFSDM 12-bit DACs I2S, PDM, support for external
audio codecs

Size of
onboard
memory

RAM 5MB SRAM, 6 GB eMMC
module

1MB SRAM 1 MB SRAM with ECC 512 KB SRAM + 16 KB RTC
SRAM

Flash 64 MB 2MB 2 MB 16 MB

Standardized
instruction set

Core
architecture

ARM Cortex M33 +
Cadence Fusion F1 DSP

Dual-core configurations
with Cortex®-M4 at 240
MHz

Arm Cortex-M85 with
Helium and TrustZone

32-bit Xtensa LX7 dual-core

Scalable
product family

Substitutable
chips

Scales up to i.MX RT700
series and scales down to
i.MX RT1060

Scales up to STM32MP1 RA6M3, RA6M5, RA8T1 Scales up to ESP32-C6 (Wi-Fi
6 + RISC-V)

1	 Processors being compared are not intended to be an exhaustive list of all compatible options
2	 Supports external displays via LCD interface (up to 800×600)

13|

https://www.eembc.org/coremark/
https://cranksoftware.com/demo_image

Prioritizing software tool criteria
based on product requirements

Designer-friendlyFunctionality and design

Designer-friendly

Attractive screens and UI

CPU horsepower

External code bridge

Multi-modal inputs

HTML support

Microcontroller support

Excellent price point

Runtime size

Designer-friendly

Streamlined design
and development

Easy learning curve

Reusable software

Powerful scripting

To support these features... Look at these criteria...

Easy learning curve

Powerful scripting

14|

Software

What about UI tools, the other critical ingredient for building
a beautifully designed product? Many companies still build
their UI code in-house. With all the excellent options out
there that are extremely capable, already written, and pre-
debugged, this is a complete waste of energy. You’re not
going to differentiate your product based on custom UI tools—
you’re going to waste a lot of time reinventing the wheel.
Save that energy for building things that will make your
product stand out and leverage someone else’s hard work.

That’s not to say that UI choice is any easy one; rather it’s
a fundamental one. Your UI tool can make a development
job easy or hard, shape the look and feel of your product’s
screen, determine how easily designers can be involved,
dictate minimal hardware requirements, set the development
language and toolchain, and either constrain or enable the
inclusion of additional features.

How do I pick the right software?

If multi-modal inputs are critical, you’re probably going to need
to be calling code in C libraries. What if getting to market in
record speed is at the top of your list? Make sure your tool
breaks down the barriers between designers and developers.

Use the chart at right to guide you when evaluating software
tools. We’ve started the process for a selection of UI tooling
products as shown in the table on the following page.

15|

Choosing the right GUI development software is about selecting a solution that accelerates your workflow, supports real-time
collaboration between designers and developers, and helps you deliver a high-performing product on schedule.

Below are four key features to prioritize when evaluating your options:

1. Fast
Prototyping
with Widget
and Component
Libraries
Having a robust
widget or
component library
is a productivity
accelerator. The
ability to drag &
drop pre-built UI
elements like buttons,
sliders, menus, and
containers, teams can
quickly assemble a
working prototype.

3. Support for
Round-Tripping
Design Files
Project needs evolve,
feedback rolls in, and
UI elements often
require last-minute
tweaks. The right
GUI tool will support
round-tripping—the
ability to update
design files and
re-import them into
the development
environment without
breaking the build.

2. Seamless
Integration with
Design Tools
The handoff between
design and development
is often where projects
slow down. The ability
to import layouts,
assets, fonts, and styling
directly from the design
tools like Figma, Sketch,
Photoshop etc, into the
development workspace
helps preserve the
original design intent
while saving hours of
manual rework.

4. Built-in Optimization
Tools for Embedded
Performance
As important as aesthetics
and usability are, your GUI
also needs to run efficiently
on the target hardware.
Whether you’re working with
a high-performance MPU or
a resource-constrained MCU,
the best GUI development
tools include optimization
features that identify unused
assets, heavy rendering
paths, or unnecessary
complexity.

16|

PART

Two sure-fire ways to break into the product sweet spot
If you’re starting a product from scratch, you have the
freedom of creating something that accommodates this
advice from the start. But what if you’ve already got products
that don’t have attention-getting interfaces with mass-market
prices? Thankfully, we’ve thought of that. We’ve got two
ways for you to consider adapting your existing designs.

1 	 Downward migration

It often makes sense to introduce new features—especially
screens—into high-end products first. With larger margins,
premium products are better able to absorb the cost of extra
hardware and early adopters are usually willing to spend
a little more coin to get the latest tech. However, as these
features catch on with the general public, it makes sense
to migrate them into mass-market products.

Automotive instrument clusters are a prime example of this
downward feature migration. Replacing physical gauges
with digital screens started in premium level cars but has
now trickled down to mid- and entry-level vehicles. Moving
screens from high-end products into lower-end ones may be
a successful strategy for you as well. If you’ve already built
a great UI on your top-end device, bringing it into a mass-
market product is a sure-fire way to differentiate it from
the screen-less competition.

To succeed at this downward migration however, requires
dramatically reducing costs and simplifying features.
Thankfully the transition to a microcontroller provides enough
cost savings to allow you to move premium features into
mid-level products, even though that journey often requires
simplification to meet the tighter constraints of the smaller

A premium code base can support a smaller screen with fewer pixels by
using lower resolution images, excluding textures, and removing low-priority
elements.

17|

hardware. The process of extending your UI downwards is
dramatically simplified if you plan in advance to build your
UI for reuse and testability, and make UI reuse and testing
part of your completion criteria.

The UI feature simplification required to reach lower-level
screens has an added benefit. Besides smaller bill of materials
costs, it also better segments your product family so that
the newly enabled mid-market devices won’t accidentally
cannibalize your upper-end products.

2 	 Upward migration

The other direction for product migration is upwards, by
adding screens to products that are already mass-market to
help them attract more customers and increase their market
penetration. The nearly ubiquitous smart device is a case in
point. While not every consumer product has a smart variant,
anybody who’s been to CES or recently visited an appliance
store can tell you which way the wind is blowing—screens
are quickly becoming ubiquitous.

While screen-less products clearly get the job done, products
with intuitive interfaces offer busy consumers additional
convenience and efficiency. Take the white goods market as
an example. Consumers can now set up laundry cycles so
that they run in off-peak hours. They can also receive alerts
from their fridge instead of wondering which condiments
are running low. You need a screen to make features like this
shine; it’s nearly impossible to imagine these advancements
implemented through old-fashioned dials and buzzers.

Adding a screen and smarts to an existing product lets you get more dollars
and longevity out of an existing product line.

18|

The public’s openness to smart screens in all manner of
devices is thanks (again) to smartphones and apps, the
continual fast pace of technology breakthroughs, and
the increasingly larger segment of society that embraces
technological advances. An additional consideration in the
white goods market is that governments and regulatory
bodies introducing energy reduction incentives often
coincidentally drive sales of the more energy-efficient
smart appliances.

While these reasons for scaling your mass-market products
upwards might be sufficient on their own, another major factor
is the bottom line. By shifting focus from the lower-margin
segment of the consumer electronics market towards the
higher-margin and higher-growth segment, you stand
to improve revenue and shareholder value.

Full color screens allow you to target the higher-growth and higher-margin
segments of your market.

19|

PART 5

How to determine if your product is a good candidate
You’re now convinced that adding a small screen and
amazing UI to an existing product is a great idea. The next
step is deciding if this approach makes sense for your product
regardless of whether it’s already on the shelves or just on the
drawing board.

The simple checklist on the following page will help you quickly
eliminate poor candidates for adding microcontroller-driven
small screens to a product, potentially saving you some time
for an evaluation that likely wouldn’t pan out.

Even if you pass the checklist, you need to create a prototype
to test out the concept. A recommended approach is to
consult with your chosen UI framework company. They’ll
be able to give you their experience-based opinion if your
product is feasible and if their platform is appropriate. Many
also offer consulting services that can help you prototype,
migrate, train, and develop your product. Don’t forget all parts of your software stack when calculating your RAM and

Flash budget.

BOM budget is more than $5 USD

NO. Embedding a display may be possible,
however, it will require finely-tuned optimization.

Do you need voice recognition?

Are your RAM requirements less than 1MB? Does your application have >10 screens?

Is your flash requirement is less than 4MB? Is your runtime image likely to be >16MB?

CONGRATULATIONS – you should be able
to add a sophisticated screen to your product!

YES

YES

YES

NO

NO

NO

Should you incorporate a display screen on your device?

NO. Microcontroller will
deliver limited experience

NO. Your MCU will require extra
RAM to fulfil this requirement.

YES. A display screen is possible,
however it will be difficult with a MCU.

YES. You will need to estimate your memory
consumption carefully before continuing.

YES. Ensure you build a
prototype before continuing.

20|

21|

PART 6

Key takeaway
Storyboard is a next-gen UI design & development tool, that
can accelerate product delivery and enhance user experience.
It empowers developers to create rich, scalable interfaces with
minimal overhead.

One can create visually appealing yet intuitive UI screens
through a drag-and-drop interface and reusable component
design libraries. It supports custom styling, animations, and
responsive layouts. One can design in their favourite design
tool like- Photoshop, Sketch, Illustrator or Figma and import
it directly helping ensure that products not only function
effectively but also provide delightful user experiences.

 It bridges the gap between design and development by
offering a unified environment where UI/UX designers and
developers collaborate seamlessly. Features like real-time
preview not only minimize miscommunication but also reduce
iteration cycles, keeping development timelines tight and
efficient.

 Built with scalability in mind, Storyboard supports direct
integration with C/C++ codebases, enabling the reuse of
existing business logic and system-level libraries.

It also supports a modular design approach and a scalable UI
architecture making it easy to scale from simple interfaces

on low-cost MCUs to more complex applications on high-
performance MPUs.

It has Reuse of UI components across multiple projects and
with component-based UI building, real-time collaboration
tools, and compatibility with both design and development
workflows Storyboard reduces development time.

Offering a robust scripting interface, real-time debugging,
simulation, and detailed documentation that make it a
A supplier with experience in creating rich UIs on a wide range of silicon can
help you diversify your portfolio.

22|

“Storyboard made something possible that none of our
competitors can come even close to reproducing.”

— Hank Bezuidenhout, Embedded IQ

pleasure for developers to work with. Developers can focus on
logic without getting bogged down by UI intricacies, while still
maintaining full control over performance-critical aspects of the
product.

Storyboard features empowering developers to develop faster,
meet demanding UX expectations on tight hardware budgets,
and reduce costly iteration cycles.

	• Storyboard allows embedded render extensions and
components at any level of the layout tree, reducing rework
during design updates or late-stage changes.

	• Build responsive UIs that adapt to different screen sizes using
relative sizing and anchor points. development time and
reducing hardware-specific customization.

	• Dynamic UI Creation with features like direct action triggering,
variable listeners, and lightweight attribute updates via Lua

	• Import interactive and data-driven elements directly from
Figma and other design tools including variables, transitions,
and strokes as lightweight fills.

	• A suite of widget-style components making it easier to
assemble interfaces quickly and consistently.

	• Inbuilt testing features improve the accuracy of UI test
automation by ensuring that test execution waits for screen
transitions to complete before continuing.

https://info.cranksoftware.com/storyboard_suite_eval

Crank Software
1000 Innovation Drive, Kanata, ON, Canada K2K 3E7
+1 (613) 595-1999 | info@cranksoftware.com | cranksoftware.com

© 2019 Crank Software. All rights reserved. No part of this publication may be reproduced without the prior written
permission of Crank Software Inc. While every precaution has been taken in the preparation of this document, Crank
Software Inc. assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein. Specifications subject to change without notice.

	btnToC-Part2:
	btnToC-Part3:
	btnToC-Part4:
	btnToC-Part5:
	btnToC-Part6:
	btnToC-Part7:
	btnCover 5:
	btnNext 5:
	btnBack 5:
	btnNext 4:
	btnBack 4:
	navIntroduction:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart2:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart4:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart5:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 21:
	Page 22:

	navPart6:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:

	btnCover:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	btnNext:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	btnBack:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart7:
	Page 4:
	Page 5:
	Page 6:
	Page 7:

	navPart1:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	navPart8:
	Page 8:
	Page 9:
	Page 10:

	navPart9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:

	Hardware:
	navPart10:
	Page 16:
	Page 17:
	Page 18:

	navPart11:
	Page 19:
	Page 20:

	navPart12:
	Page 21:
	Page 22:

	Button 17:

