
Crank Storyboard

Crank Storyboard

Table of Contents
1. What Is Storyboard ... 1

A New Way to Build Embedded User Interfaces .. 1
Storyboard Designer and Storyboard Engine .. 1
A Non-Compiled Solution .. 2
Storyboard Software Updates .. 2

Compatibility with Previous Versions ... 2
2. Storyboard Architecture .. 3

Application Model Hierarchy .. 3
Event Driven Interaction Model .. 5

Events to External Applications .. 6
Data Binding for Dynamic Behavior .. 7

Context and Variables ... 9
Storyboard Model Internal Variables .. 10

Animation Definitions .. 12
3. Typical Development Workflow .. 14

Start a New Project: From Photoshop or from Scratch ... 14
Create and Organize Screen Content .. 14
Bind Events to Invoke Actions .. 14
Simulate and Export Model for Engine ... 15

4. Storyboard Designer Environment .. 16
Storyboard Designer Workbench .. 16
Anatomy of a Storyboard Designer Project .. 17
Storyboard Designer Editor ... 19

Editing Content ... 19
Editor Toolbar .. 20
Direct Editing ... 20

Storyboard Resource Export Configuration Editor ... 21
Managing Configurations .. 21
Resource Tree .. 22
Resource Export Options .. 22
Application Footprint Preview ... 25

Storyboard Designer Views ... 25
Actions View ... 25
Application Model View .. 26
Animation Timeline View .. 27
Images View .. 31
Layers View ... 32
Metrics View .. 33
Navigator View .. 35
Outline View .. 36
Problems View ... 37
Properties View .. 38
Component View .. 39
Variables View ... 39
Notes View .. 42

Storyboard Designer Utilities .. 43
Design Notes .. 43
GoTo Dialog .. 44
Storyboard Search Dialog ... 45
Resize Storyboard Application ... 46
Resource Clean Up Wizard ... 50

iii

Crank Storyboard

Consolidate Images Wizard ... 51
Trim Images Wizard .. 52
Split Images Wizard .. 53
Merge Control Images ... 54

Storyboard Performance Log Viewer .. 54
Predefined Record Plots ... 55
Custom Record Plots ... 56
Animation Plots ... 57
Analyzing Applications Using Record Plots ... 58
Toggling Event Lines .. 59
Plot Selector ... 60
Chart UI Elements and Usage ... 61

5. Creating A Storyboard Project ... 65
New Empty Storyboard Project ... 65
New Project from a Photoshop PSD File ... 66
New Project from a Storyboard Sample .. 67
New Project from Storyboard Embedded Engine File .. 68
Existing Project Import .. 69
Working with Multiple Application Design Files .. 71
Controlling Feature Enablement on Projects ... 72

6. Adding Content to your Application ... 74
Object Naming and Reserved Namespaces .. 74

7. Working with Events ... 76
Event Editor ... 76

Opening the Event Editor ... 76
Adding an Event Definition .. 76
Data Element Types .. 79
Changing Element Array Length .. 79
Reordering Event Data Elements ... 80
Editing Min and Max Attributes .. 80

Using the Storyboard IO Connector .. 80
Live Mode ... 81
Saved Mode ... 83
Data Element Editors ... 84

Storyboard IO Event C/C++ Header Export ... 85
8. Connecting Events to Actions .. 86

Event and Action Matching Rules .. 88
9. Using Variables to Create a Dynamic UI ... 91

Table Variables ... 92
Triggering Events on Variable Changes .. 94

10. Creating and Applying Animations ... 95
Animation Action .. 95
Timer Keyframe Animations ... 96
Screen Transition Animations .. 96

11. Simulating your Application .. 98
12. Scripting with Lua .. 100

Lua Action Callback Function ... 100
Passing Extra Parameters to Functions .. 101
Lua Execution Environment .. 101
Asynchronous Lua Support ... 102
Lua Debugger ... 102
Lua Executables .. 105

13. Working with C Callbacks ... 107
What are C Callbacks? ... 107

iv

Crank Storyboard

C Callbacks on Windows .. 107
Example C Callback .. 107
C Callback Export Labels ... 108
Exporting C Callbacks ... 109

C Callback Export Wizard .. 109
C Callback Command Line Export ... 110

14. Working with Design States ... 112
What are Design States? ... 112
Creating a Design State .. 112
Editing a Design State .. 113

Master/State Context .. 113
Storyboard Editor .. 114
Properties View ... 114
Variables View ... 114
Manually Editing Design States ... 115

Removing Changes From Design States .. 115
Hiding/Showing Design States ... 116

All Design States .. 116
Individual States .. 116

Converting a Design State ... 117
Animation Preview with Design States .. 117

15. Working with Images ... 119
Image Rotation ... 119

Rotate At Center ... 119
Rotate At Custom Point .. 120

Alpha and Transparency in Images ... 121
Creating Scalable 9-Patch Bitmap Images .. 121
Multi-Frame Animated GIF Images .. 122

16. Working with Text ... 123
Rich Text Styling and Markup ... 123
Translation and Internationalization .. 126

Text Translation View .. 127
Translating a Storyboard Application .. 129
Creating and Editing Translation Content CSV Files .. 131

Script Specific Text Shaping and Layout ... 133
17. Working with Touch, Gestures and User Input .. 134

Configuring Touchscreen Input .. 134
Windowed Applications .. 134
Gesture Support .. 134
Multi-Touch Gestures ... 135

gre.mtmove .. 135
gre.mtpinch ... 136
gre.mtrotate .. 136

Enabling Gesture In Your Application .. 137
18. Creating Lists and Tables .. 140
19. Working with Scrolling Content ... 143

Scroll Synchronization .. 144
20. OpenGL and 3D Rendering ... 146

Storyboard 3D Rendering Model .. 146
3D Rendering Fundamentals .. 146
The Scene Graph and Transformations .. 146
Material Support ... 147
Animation and Variable Support .. 148
Mapping FBX Animation data into meaningful structures 148

v

Crank Storyboard

Support for Animation Takes .. 149
Troubleshooting 3D Problems .. 149
Working with OpenGL Shaders, Transforms and Compressed Textures 150

3D Transforms and Custom Shaders ... 150
Custom Shader Support .. 153
Compressed Textures ... 154

21. Working with Audio and Video .. 155
Media Backend Services ... 156

GStreamer Application ... 156
GStreamer Pipeline .. 156
FFmpeg Plugin ... 156

22. Multi-File Application Development .. 158
Simulating and Exporting Multiple Model Files .. 159
Resolving Conflicts and Synchronizing Changes ... 160

23. Reusable Graphical Components ... 162
Creation Guidelines and Conventions .. 162
Editing Components and Propagating Changes ... 163

24. Collaboration and Team Development ... 164
Revision Control System Integration ... 164
Comparing and Merging Model Files .. 164
Comparing and Merging Projects ... 166
Exporting Storyboard Projects for Sharing ... 167

25. Exporting and Running on your Embedded Target ... 169
Export Workflow ... 169

Selecting Files For Export ... 171
Deployment Bundle Packages .. 171

Storyboard Embedded Engine (GAPP) .. 171
Storyboard Compressed Package (SBP) ... 171
Native Android Application (APK) ... 171
Native iOS Application .. 172
Windows Standalone Launcher (EXE) .. 172
Storyboard Embedded Resource Header (C/C++) .. 172

Export Transfer Methods .. 173
Filesystem .. 173
SCP Transfer .. 173

Exporting from the Command Line .. 174
Exporting from the Command Line using Export Configuration 176

Additional Options ... 176
Setting up Storyboard Engine .. 177

Font Environment Variable ... 177
QNX Screen Environment ... 177

Running Storyboard Engine ... 178
Target Specific Configurations ... 178

Linux x86, armle ... 178
Microsoft WinCE, Compact7 win32, armle .. 180
Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle 180

26. Working with Storyboard Lite Platforms .. 181
What is Storyboard Lite ... 181
Storyboard Lite Installers .. 181
Design Considerations .. 181

27. Working with Mobile Platforms: Android and iOS ... 182
Exporting to iOS Devices ... 182

Xcode .. 182
iOS Developer Account .. 182

vi

Crank Storyboard

Code Signing Certificate .. 182
Device IDs ... 182
Application IDs .. 183
Provisioning Profile .. 183
Adding Extra Libraries for iOS .. 183

Exporting to Android Devices ... 184
Adding Extra Libraries for Android .. 185
Storyboard Lua Android Integration .. 187

28. Sending and Receiving Data with Storyboard IO ... 193
Storyboard IO Transport protocols .. 193
Connecting to a Storyboard Application .. 194

Storyboard IO Over TCP .. 194
Sending Events to a Storyboard Application ... 195

Event Naming Conventions ... 196
Serialized Data and the Event Format String .. 196

Setting Application Data ... 199
Receiving Events from a Storyboard Application .. 200
Debugging Storyboard IO ... 201

Debugging egress (Storyboard Engine sending to backend) 201
Debugging ingress (Storyboard Engine receiving from backend) 202

Storyboard IO Utilities ... 203
iogen ... 203
iorcv .. 204

29. Optimizing Your Storyboard Application ... 205
Measuring Performance .. 205
Action Execution Performance Considerations .. 206
Choosing the Right Image Format(s) Bit Depth .. 206
Framerate (Frames Per Second) ... 206
Scaling Images .. 207
Reducing Output Verbosity ... 207
Adjusting Engine Rendering Options .. 207
Managing Resource Memory ... 207
OpenGL Scene Graph Optimization .. 208

30. Extending Storyboard Functionality ... 209
User Defined Action Templates ... 209
User Defined Render Extension Templates .. 210

31. Structuring Your Photoshop Import Content .. 212
PSD file Structure for Import into Storyboard .. 212
PSD File Requirements .. 212
Application Model Hierarchy .. 212
Artboards ... 214
Layer Effects and Blending Modes ... 215
Naming Requirements .. 215
Naming Conventions .. 215

name_layer ... 216
name_group .. 216
name_control .. 216
name_up and name_down ... 216

Common Photoshop Elements ... 216
Transparency .. 216
Naming Convention Deviation ... 217
Sub Group Folders .. 217

32. Re-Importing Photoshop and Updating Content ... 218
Re-Importing Photoshop Content .. 218

vii

Crank Storyboard

A. Storyboard Lua API .. 222
Storyboard Lua API ... 222

gre.APP_ROOT ... 222
gre.SCRIPT_ROOT ... 222
gre.PLUGIN_ROOT .. 223
gre.LOG_ constants ... 223
gre.LEFT, gre.RIGHT, gre.CENTER, gre.TOP, gre.BOTTOM 223
gre.OPAQUE, gre.TRANSPARENT ... 224
gre.set_data .. 224
gre.get_data .. 224
gre.set_value ... 225
gre.get_value .. 226
gre.resolve_data_key .. 226
gre.get_control_attrs ... 227
gre.set_control_attrs ... 228
gre.get_table_attrs .. 229
gre.set_table_attrs .. 230
gre.get_table_cell_attrs ... 230
gre.get_group_attrs .. 231
gre.set_group_attrs ... 232
gre.get_layer_attrs .. 233
gre.set_layer_attrs .. 233
gre.set_layer_attrs_global .. 236
gre.screen_attach_layer ... 236
gre.resize_control ... 237
gre.move_control ... 238
gre.move_layer .. 238
gre.set_focus ... 239
gre.get_focus .. 240
gre.send_event .. 240
gre.send_event_target ... 241
gre.send_event_data ... 242
gre.greio_disconnect ... 243
gre.clone_object .. 244
gre.delete_object .. 245
gre.clone_control ... 245
gre.delete_control .. 245
gre.poly_string .. 246
gre.get_string_size ... 246
gre.load_resource ... 247
gre.dump_resource ... 248
gre.walk_pool ... 249
gre.load_image .. 249
gre.timer_set_timeout ... 250
gre.timer_set_interval ... 251
gre.timer_clear_timeout .. 251
gre.timer_clear_interval .. 252
gre.animation_create .. 253
gre.animation_add_step ... 254
gre.animation_destroy ... 254
gre.animation_trigger .. 255
gre.animation_stop ... 256
gre.animation_pause ... 257
gre.animation_resume ... 258

viii

Crank Storyboard

gre.animation_create_tween ... 259
gre.touch .. 260
gre.key_up .. 261
gre.key_down .. 261
gre.key_repeat ... 262
gre.redraw .. 263
gre.quit .. 263
gre.thread_create ... 264
gre.receive_event ... 265
gre.env ... 266
gre.log ... 267
gre.mstime .. 268
gre.rgb ... 268
gre.torgb, gre.to_rgb ... 269
gre.to_alignment .. 270
gre.to_alpha .. 270
gre.rtext_text_extent ... 270
gre.perf_trace_point ... 271
gre.perf_trace_duration ... 271

Storyboard Lua Canvas API .. 272
gre.get_canvas ... 272
CANVAS:get_dimensions ... 272
CANVAS:fill .. 273
CANVAS:fill_rect ... 273
CANVAS:fill_poly .. 274
CANVAS:stroke_line ... 274
CANVAS:stroke_rect ... 275
CANVAS:stroke_poly .. 275
CANVAS:clear_rect ... 276
CANVAS:set_pixel .. 276
CANVAS:set_alpha ... 277
CANVAS:set_line_width .. 277
CANVAS:draw_image ... 278
CANVAS:draw_text ... 278

Storyboard Lua DOM Module ... 279
gredom .. 279
DOMOBJECT .. 281
CONTROL ... 284
TABLE .. 290
GROUP ... 291
LAYERINSTANCE ... 293
Lua DOM Samples .. 297

B. Storyboard IO API .. 299
Storyboard IO API .. 299

gre_io_add_mdata .. 299
gre_io_close ... 299
gre_io_free_buffer ... 300
gre_io_grow_buffer .. 300
gre_io_open .. 300
gre_io_receive ... 301
gre_io_send .. 301
gre_io_send_mdata .. 302
gre_io_serialize ... 302
gre_io_size_buffer ... 303

ix

Crank Storyboard

gre_io_unserialize .. 303
gre_io_zero_buffer ... 304
gre_io_get_error_codes ... 304
gre_io_get_error_message ... 305

C. Storyboard Engine and Plugin Options .. 306
Storyboard Engine Plugin Options .. 306

D. Standard Event Definitions ... 320
Standard Event Definitions .. 320

System Events .. 320
Pointer Events ... 321
Keyboard Events ... 329
Screen Manager Events ... 330
Focus Events .. 330
Table Events ... 331
Table Scroll Events .. 332
Layer Scroll Events ... 333
Mobile Events (Android and iOS) .. 334
Android Events ... 335
Windows Embedded Compact 2013 (WEC2013) Events ... 335

Plugin Specific Event Definitions ... 336
Timer Events .. 336
Animation Events .. 336
Gesture Events .. 337
Screen Display Capture (ScreenDump) Events .. 337
Screen Event Capture/Playback Events .. 338
Media Events .. 338
Logger Events ... 340

E. Standard Action Definitions .. 341
Built-in Action Definitions .. 341

gra.screen ... 341
gra.screen.fade .. 341
gra.screen.hold .. 341
gra.screen.release ... 341
gra.sendevent .. 341
gra.datachange .. 342
gra.screen.focus.set .. 342
gra.screen.focus.next .. 342
gra.screen.focus.prev .. 342
gra.screen.focus.direction .. 343
gra.table.scroll ... 343
gra.table.resize .. 344
gra.table.navigate ... 344
gra.scroll.stop .. 345
gra.log ... 345
gra.resource.dump_def .. 345
gra.playback ... 345
gra.capture .. 345

Plugin Action Definitions ... 346
gra.lua ... 346
gra.ccallback ... 346
gra.animate ... 346
gra.animate.stop .. 347
gra.audio .. 347
gra.greio ... 347

x

Crank Storyboard

gra.perf_state .. 348
gra.redirect ... 348
gra.screen.path .. 348
gra.screen.scale ... 349
gra.screen.glswitch ... 349
gra.screen.glrotate .. 350
gra.screen.glflip ... 350
gra.screen.gldoors .. 351
gra.screen.gltip .. 352
gra.screen.glcube ... 352
gra.screen.rotate .. 353
gra.screendump ... 353
gra.system .. 353
gra.timer .. 353
gra.timer.stop .. 354
Media Actions ... 354

F. Standard Render Extension Definitions .. 357
Common Render Extension Options ... 357
Canvas ... 358
Circle and Arc .. 359
External Buffer ... 359
Fill .. 359
Image .. 359
Polygon ... 360
Rectangle ... 361
Text .. 361
3D Model ... 362

G. Storyboard Engine Public API ... 364
gr_application_create_args .. 364
gr_application_create .. 365
gr_application_free .. 365
gr_application_run ... 366
gr_application_quit .. 366
gr_application_debug ... 367
gr_app_log ... 367
gr_application_set_data ... 368
gr_application_set_data_variable .. 368
gr_application_get_data .. 369
gr_application_get_data_variable .. 370
gr_application_add_event_listener .. 370
gr_application_rem_event_listener .. 371
gr_application_send_event ... 371
gr_context_get_application .. 372
gr_context_max_fqn ... 373
gr_context_get_row .. 373
gr_context_get_column ... 373
gr_context_get_control ... 374
gr_context_get_group ... 374
gr_context_get_layer .. 375
gr_context_get_screen .. 376
gr_context_get_fqn .. 376
gr_context_get_event_name ... 377
gr_context_get_event_data .. 377

I. Storyboard Tutorials ... 379

xi

Crank Storyboard

33. Importing Sample Projects from Crank's Public SVN .. 381
34. Working with Multiple Application Design Files ... 386

Creating a Project .. 386
Resolving Conflicts .. 388

35. Creating a 3D Model Application ... 389
New Project .. 389
3D Model Control ... 389
Resize Model .. 391

II. Storyboard Demo Images ... 392
36. NXP .. 395

i.MX 6QuadPlus .. 395
Demo Details .. 395

i.MX 6UltraLite .. 395
Demo Details .. 395

i.MX 6ULL .. 396
Demo Details .. 396

i.MX 6DualLite ... 396
Demo Details .. 396

i.MX 6SoloX .. 396
Demo Details .. 396

Toradex i.MX 7Dual SoM .. 397
Demo Details .. 397
Flashing the Image .. 397
U-Boot ... 398

Copying Image to an SD Card - Linux .. 398
Copying Image to an SD Card - Windows ... 398
Running the Image .. 398
Turn On or Off the Console .. 398

37. STMicroelectronics ... 400
STM32F429 ... 400

Demo Details .. 400
STM32F439 ... 400

Demo Details .. 400
STM32 F7 .. 400

Demo Details .. 400
Required Hardware and Software ... 401
Package Contents .. 401
STM32 ST-LINK Utility .. 402
Running the Demo .. 404
Importing the Demo into Storyboard Designer .. 405
Creating Your Own Demo .. 405

38. Microchip ... 406
SAMA5D2 ... 406

Demo Details .. 406
SAMA5D2 with 7 inch Display ... 406

Demo Details .. 406
Copying Image to an SD Card - Linux .. 407
Creating an Image - Windows ... 407
Running the Image .. 407

39. Renesas .. 408
RZ/A1 ... 408

Demo Details .. 408
Flashing the Image .. 408

40. Linux ... 409

xii

Crank Storyboard

TI AM355 Starter Kit .. 409
Step 1: Importing A Storyboard Sample .. 409
Step 2: Exporting A Storyboard Application ... 411
Step 3: Selecting The Storyboard Embedded Engine 413
Step 4: Configuring The Target Platform ... 413
Step 5: Running The Storyboard Application .. 413

Raspberry Pi ... 414
III. Release Notes .. 415

41. Release Notes 6.2 ... 417
New Features and Functionality ... 417
Designer .. 418
Engine ... 418
Lua Scripting .. 419
Behavioural Changes and Deprecations ... 419
Known Issues ... 419

42. Release Notes 6.1 ... 421
New Features and Functionality ... 421
Storyboard Designer .. 421
Storyboard Engine ... 422
Lua Scripting .. 422
Behavioural Changes and Deprecations ... 422

43. Release Notes 6.0 ... 423
New Features and Functionality ... 423
General .. 424
Storyboard Designer .. 424
Storyboard Engine ... 424
Behavioural Changes and Deprecations ... 425

IV. Licensing .. 427
44. Storyboard Licensing .. 429

xiii

List of Tables
16.1. Supported Rich Text Tags ... 123
16.2. Supported Style Attributes ... 124
25.1. Options .. 178
28.1. No events are being received ... 201
28.2. A particular event is not being received ... 202
28.3. Event data not correct .. 202
28.4. The trouble shooting steps for egress Storyboard apply in this scenario, so see the above
steps. ... 202
C.1. Plugin Options ... 306

xiv

Chapter 1. What Is Storyboard
A New Way to Build Embedded User Interfaces

Storyboard takes a design centric approach to creating embedded user interfaces. Users create interfaces
in a desktop development environment by directly importing content from graphic design tools such as
Photoshop and by dragging and dropping standard image assets into position to build up screens.

Storyboard isn't a traditional development environment. With traditional development methodologies soft-
ware developers build user interfaces using functionality libraries and are unable to easily validate the
look and feel of the interface while they are coding. User interfaces developed using Storyboard are im-
mediately visible and teams can test and validate the interaction, graphics, and user experience during
development via desktop simulation.

Unlike widget frameworks where you instantiate pre-configured elements and attempt customize them,
Storyboard Components offer a way of quickly creating reusable display elements that can be associated
with logic that is independent of the presentation.

Storyboard Designer and Storyboard Engine
Storyboard is composed of two parts: Storyboard Designer and Storyboard Engine.

Storyboard Designer is the desktop development environment that designers and engineers use to assemble
their user interface application. In this environment you can quickly import structured content from existing
tools, such as Photoshop or 3ds Max, or as standard image and font files and assemble the visual structure
of your application.

Once an application structure is assembled, Designer exports the application as a sophisticated state ma-
chine application model that is used as input to the Storyboard Engine. This application model is not gen-
erated source code that needs to be compiled (i.e. C/C++) and is completely independent of the target
execution environment.

Storyboard Engine is the target-specific executable (or library in some scenarios) that loads the model gen-
erated by Designer and starts the execution of the state machine. Storyboard Engine is a highly optimized
execution environment. Each engine is configured for a specific CPU architecture (arm, x86, mips...),
operating system (Linux, QNX, Android, FreeRTOS...) and rendering technology (OpenGL, OpenVG,

1

What Is Storyboard

software framebuffer, custom ...). This structure makes porting the Storyboard Engine to a new platform
configuration relatively risk free and a deterministic process.

A Non-Compiled Solution
The application model that is generated as output from Designer does not require compilation and is target
environment agnostic. This makes it straightforward to generate applications that execute in a variety of
different environments, such as an application that can work both on an embedded device (for example
a wall thermostat) and in a mobile context.

Another advantage of being hardware and operating system agnostic is that elements of the user interface
can be used as part of a product's hardware evaluation process. It takes only minutes to create a rich
animated application when working with Designer's Photoshop import functionality. This application can
be immediately evaluated on any one of the over forty different platform configurations spanning more
than a dozen operating systems and popular rendering technologies.

Storyboard Software Updates
Storyboard minor updates are provided through a software update installer within Storyboard Designer.

When Storyboard Designer starts, it automatically checks for updates and again every four hours while
running. Users can also force a check for updates from within Storyboard Designer by selecting Help >
Check for Updates from the main menu. If an update exists you will be notified to apply it and a wizard
will guide you through the download and installation process.

Updates won't take effect until you restart Storyboard Designer.

Major updates are provided as a separate stand-alone installer. It is not recommended to install new ver-
sions of Storyboard on top of each other as there may be a number of file conflicts leading to instability.
Install Storyboard versions to separate directories. You can install and run multiple versions of Storyboard
on a system at the same time.

Compatibility with Previous Versions
Storyboard Designer 6.0 can import and work with projects from Storyboard Designer 4.0 and later (i.e.
4.0 - 4.2, 5.0 - 5.3). Projects created with versions of Storyboard Designer older than 4.0 must first be
converted to an updated file format using a Storyboard Designer 4.x or Storyboard Designer 5.x release.
Contact support@cranksoftware.com if you need assistance in performing this conversion.

When migrating to new versions of Storyboard save and archive a snapshot of the project if you plan to
continue to work with it in an older Storyboard Designer environment.

To use a Storyboard project from an earlier release than it was created (e.g., using a version 6.0 project with
a version 5.0 environment), the best approach is to 'back migrate' the project using a Storyboard Engine
export and then a Storyboard Engine import. The export to a Storyboard Engine creates a runtime file
(*.gapp) from the design file (*.gde). The Storyboard Engine file contains only the information required
to run the application and does not contain all of the design material (such as notes and unused layers) so
that content will be lost. Features that are not present or used by the older Storyboard version will be lost
on import since it is not possible to use them with an older environment.

2

Chapter 2. Storyboard Architecture
There are three fundamental Storyboard concepts that you must understand when building user interface
applications with Storyboard: The application model hierarchy, the event based interaction, and using
variables for manipulating dynamic content. Having a solid grasp of these fundamentals will guide you
from creative concept to implementation.

Application Model Hierarchy
An application is organized as a hierarchy of screens, layers, groups, and controls that are collectively
called model elements.

Screens are used to represent contextual visual states of your application. When working within Designer
your primary viewport into how the application is organized will be through the screens of the application
that are defined. Structurally a screen is an ordered list of layers that are composited together to form the
final screen display. In a Storyboard application only one screen can be active at a time.

Layers are used to organize related visual elements together in a reusable manner. In this case, reuse means
reusable in different screen contexts so that the same layer can be associated with several different screens.
When layers are shared among multiple screens, for example, as a common menu or background, then
the content of the layer is exactly the same in those different screen contexts. If content changes on the
layer in one screen context, then the content will change across all screens that use that layer. While the
content for layers may be shared, there are several properties that are tied specifically to how the layer is
used within a screen. These properties are called layer instance properties since they relate directly to a
particular instance of a layer and include the x/y position of the layer, the visibility/hidden state, and the
transparency or alpha blending value of the layer.

3

Storyboard Architecture

Since the layers have a configured size, content can be positioned within the layer and will clip to the
bounds of the layer and not draw outside of it. By adjusting the position of a layer, you can move a
significant amount of visual content with minimal effort. Layers however, are still containers for other
structural objects, groups, and controls.

Controls are the primary user interaction points for most applications. Controls contain an ordered list of
render extensions which are the base Storyboard rendering and drawing primitives. Example render ex-
tensions include image, text, fills, arcs, and polygons. A control has a size and all of the drawing performed
by the render extension happens within the area of the control, which means a control is a clipping region.
Similar to layers, controls also have properties such as position and visibility.

Controls are the basic building blocks for assembling a user interface. The same visual effect may be
achieved by using a single control with multiple render extensions stacked on top of each other and posi-
tioned within the area of the control, or by using multiple controls that together make up the same visual
presentation, or a hybrid combination of multiple controls and multiple render extensions. In cases where
multiple controls are used to achieve a visual effect, we want to maintain cohesion. For this, it can be
useful to put the controls into a group.

Groups are a collection of controls. Unlike a layer however, a group does not clip its content and the size
of the group is determined by the bounds of the controls it contains. A group does have a position and all
of the controls within the group will have a position that is relative to the group's position. In this way,
groups are similar to layers in that changing the position of a group will translate all of the controls at once
or changing the visible/hidden state will cause all of the controls contained to either be shown or hidden.

Groups and controls are both child objects of a layer, but groups can only contain controls. There is cur-
rently no grouping of groups, though that may be a future consideration.

Tables are a special form of templated control that is repeated over and over in a grid or list like pattern.
Tables and their table cell control templates are treated the same as controls, but use a different represen-
tation for dynamic data. This topic is covered in more detail in the chapter Chapter 18, Creating Lists
and Tables.

The application is the root of this hierarchy. The application maintains the list of all screens, layers, groups,
and controls and determines at the start of execution which screen is the first displayed. The start screen
setting is a property of the screen model object and can be set within Designer. Every application must
have at least one screen and every screen must have at least one layer to be valid. Designer will generally
raise an error on export if these conditions aren't met within the application design.

4

Storyboard Architecture

Event Driven Interaction Model
Storyboard is an entirely event-driven user interface state machine. Events are the basic communication
mechanism for triggering activity and passing data in a Storyboard application.

Events are named entities and optionally carry an extra binary data payload. Events come in three main
flavours:

• Traditional events such as press, release, motion, and keydown are generated by standard input sources.
As these events are generally common, Storyboard provides a public definition for these events so that
they can be externally generated in a consistent manner.

• Application events are events that are specifically related to the user interface and are designed to trigger
activity from within the user interface itself. Events used this way form an internal API for the applica-
tion and are generally private as they may be used solely for triggering a common UI experience such
as "start_animation" or "goto_screen".

• External events are events that typically make up the data communication API with a backend service
that contains the core data model of the product. These events frequently contain a domain-specific data
payload related to the application. External events represent the API between front-end user interface
and backend service and are specific to a product and should be well-defined to allow parallel develop-
ment to occur among front and backend developers.

Events may be received from multiple different input sources, but are always processed serially by the
Storyboard Engine.

Events trigger actions. Actions perform tasks; manipulate data, interact with the system, log messages,
generate more events. There are many different actions that perform different things. Screen transition
actions perform visual screen transitions. Data change and animation actions modify data within the UI
that can cause a visual change. Timer actions are used to trigger new events in either a repetitive or one-shot
manner, while Lua script actions invoke a callback function scripted in Lua (Lua is a script programming
language used for glue logic in Storyboard). In addition to all of the fixed actions, the Storyboard SDK
provides users with the ability to write and contribute their own actions to the engine.

The event/action association can be made on any of the model elements. For example, a control with an
image render extension that is acting like a push button might have an event/action association that would
match a press event and cause a data change action that hides or shows a control or perhaps changes the
value of a variable.

Where the event/action association is made is important. Associations that are made on controls must
be triggered by position-related events, such as press and release, otherwise the control must use focus
settings to ensure that non-position based events (such as external events) are delivered to their context.

5

Storyboard Architecture

Associations that are made on layer or group model objects are more generic, but in order to be triggered
the event must first be potentially triggered against a control in that context. Screen actions will always
be matched as long as the screen is the currently visible screen. Application event/action bindings are the
most general and will match in all contexts and are generally the most suitable when matching external
events and processing model data.

The event-driven model that Storyboard uses for user interaction has significant benefits that may not be
immediately apparent. The first is that the events form a discrete and defined interface point between the
UI and the rest of the product. By isolating the external events:

• Graphic designers working on the user interface have a clear expectation regarding the data they have
available to interpret.

• Test developers can exercise both the frontend and backend by generating simulated events with arti-
ficial data.

• Backend software developers have a clear direction on what data they are making available and do not
have to overexpose or overdevelop their interfaces for functionality that will never be used.

The event model also ensures a complete decoupling of the UI from the implementation and is what makes
desktop simulation such a practical reality. Simulated data can be easily injected in environments where
the real target hardware may not be ready, prohibitively expensive, or just plain awkward to work with.
Building the UI in a comfortable environment and knowing that it will move readily to the embedded
target at the time of deployment with small adjustments is an invaluable boost to overall productivity.

Events to External Applications

Communication with external processes in the embedded system can be accomplished in several ways.
One approach that provides a strong API while maintaining a loose coupling for the implementation is
to use Storyboard IO.

Storyboard IO is provided as a plugin for the Storyboard Engine and includes a C API and library for
external applications to link against.

When the Storyboard IO plug-in is loaded a channel is created in order for processes to inject events into
the system. A single event queue is used to serialize the events and therefore any events sent via Storyboard
IO will be placed in the queue with standard Storyboard system events. If the external application wishes to
receive events, it can create its own Storyboard IO channel which can have events sent through. Applica-
tions can have multiple receive channels and the Engine has a single input channel. The following diagram
illustrates an application which can send events to the Engine and review events on a named channel.

6

Storyboard Architecture

The chapter Chapter 28, Sending and Receiving Data with Storyboard IO discusses how to work with
Storyboard IO to send and received events while the C API is covered in detail in the appendix Appendix B,
Storyboard IO API.

Data Binding for Dynamic Behavior
Render extensions associated with controls render the content, from text and images to arcs and polygons.
Each render extension's behavior is controlled through a set of properties that the user can configure, such
as fill color, text size and font, and image filename. By default, the settings for these properties are fixed
at design time and can't be changed dynamically at runtime. However, these settings can be dynamically
adjusted at runtime by using Storyboard variables.

Attributes, for both render extensions and actions, that may require dynamic adjustment at runtime can be
associated to named Storyboard variables.

Similar to the event/action association, variables can be bound to any of the model elements in the appli-
cation. This ownership dictates how that variable will be referenced when it is associated with a property
in a render extension or action. Storyboard variables are managed as loosely typed key/value pairs in the
Storyboard Engine's data manager component. The key is the fully qualified name of the variable as it
is declared within the model and the value is the value of the variable set initially within Designer and
changeable at runtime through various actions, animations, or using the Lua API.

The Storyboard model is hierarchical, so the construction of a fully qualified model path is a straightfor-
ward process of joining model element name segments with a . (dot) in between them. The following
list demonstrates how the fully qualified model name is formed for a variable, varname, associated with
different contexts in the model.

varname This identifies a variable, varname, as an applica-
tion level variable

screen_name.varname This identifies a variable, varname, as associated
with the screen screen_name

7

Storyboard Architecture

layer_name.varname This identifies a variable, varname, as associated
with the layer layer_name

screen_name.layer_name.varname This identifies a variable, varname, as associat-
ed with the layer instance layer_name associated
with the screen screen_name. Most variables are
not defined as layer instance variables, but rather as
layer variables.

layer_name.control_name.varname This identifies a variable, varname, as associat-
ed with the control control_name that is lo-
cated on the layer layer_name. Groups vari-
ables can also be addressed in this same manner
as groups are also children of layers. The variable,
layer_name.group_name.varname identi-
fies a variable varname within the group
group_name.

layer_name.group_name.control_name.varname This identifies a variable, varname, as associat-
ed with the control control_name that is locat-
ed in the group group_name on the layer lay-
er_name.

Note

There is some overlap in the Storyboard namespace that could lead to ambiguous resolution. To
maintain a clear name resolution, layers and screens may not have the same names. Within a
container, such as a layer or a group, all of the model element names must be unique. Storyboard
Designer enforces this restriction.

Which model element owns a variable is usually a good indication of its scope. Variables that are owned
by control model elements will typically have an association with render extensions or actions local to that
control. A variable with a broader ownership, such as at the screen or application level, will likely have
several different associations within the model.

For example, to represent a button with a changing image, one might create a variable on a control that
is used by an image render extension on that control. To easily configure the fonts and text sizes used
within the application, you might create several variables at the application level and have all of text render
extensions refer to those variables.

Variables represent data that is used within the user interface but are not tied to any single context. The same
variable may be referenced by different render extension clients or even associated with action properties.

When you want to make a change to the visual presentation of the user interface, you don't perform drawing
calls directly, instead you make changes to one of the variables that you have created. The Storyboard
Engine monitors the values of all variables. As variable content changes, Storyboard determines if the
variable is used by the current on-screen content. If there are changes, the Engine automatically schedules
a refresh operation and groups the refresh operations together for efficiency.

To associate a property with a variable or to change the value of a variable, it's important to understand
how a variable is addressed within the application. The addressing scheme generally follows the model
hierarchy. When a variable is sourced from the application root using this full path, it is called a fully
qualified name.

Note that variables associated with layers and variables associated with screens have the same addressing
path. This is because a layer and it's content can exist on multiple screens, and removing the screen com-
ponent allows a consistent address path to groups and controls on that layer.

8

Storyboard Architecture

Context and Variables
It can be cumbersome to always use a variable's fully qualified name. In some cases it is more convenient
to address a variable by its context of use. For example, render extensions are always associated with a
control and in many instances the properties that they associate to variables will also be local to that control.
In this situation it would be more convenient to refer to a variable as being 'local to the control'. Storyboard
supports this through the use of a data context shorthand that can replace a variable's fully qualified name.

The data context is the context of execution of a particular activity. For render extensions, this means
the parent control of the render extension. For actions, this means the model element associated with
the triggering event. The shorthand notation is a string formatted as ${@@CONTEXT:NAME} where
CONTEXT is going to be one of app, screen, group, layer, or control indicating the model element in
context to resolve, while the NAME is the name of the variable being addressed.

To reduce complexity of using the fully qualified model paths and to minimize the maintenance effort as
a project evolves or changes, Storyboard defines several variable shortcuts that will expand their value
based on the current model context in which they are being resolved.

${app:varname} Refers to the application variable varname.

${screen:varname} Refers to the screen variable varname.

${layer:varname} Refers to the layer variable varname.

${group:varname} Refers to the group variable varname.

${control:varname} Refers to the control variable varname.

For example, in the following Storyboard model:

Application
 + MainScreen
 + ALayer
 + AGroup
 + AControl

where the current focus is associated with the control AControl, reference to a variable varname would
resolve to a fully qualified path as follows:

${app:varname} varname

${screen:varname} MainScreen.varname

${layer:varname} ALayer.varname

${group:varname} ALayer.AGroup.varname

${control:varname} ALayer.AGroup.AControl.varname

For tables, where the context also includes the row and column index of the table cell being adjusted, a
special ${cell:CONTEXT:NAME} notation can be used that converts the variable shorthand into a variable
that contains the row and column as a postfix to the standard variable name. For example, if the current
focus or selection was directed a table control named ATable on the cell that was occupying row five
and column one then the following would be variable expansions:

${cell:app:varname} varname.5.1

${cell:group:varname} ALayer.AGroup.varname.5.1

9

Storyboard Architecture

${cell:control:varname} ALayer.AGroup.ATable.varname.5.1

Storyboard Model Internal Variables
Not all variables have to be defined by the user and associated with render extension and action properties.
Storyboard defines a set of variables for the model element properties such as position, size, and visibility.
Each class of model elements contains a slightly different set of values, but all of the variables are prefixed
with the grd_ (Graphical Runtime Data) variable namespace to avoid any confusion with user created
variables.

These variables are generally accessed using ${model_object:varname}, for example ${con-
trol:grd_x} indicates the x position of the current control

Layer and Layer Instance Variables

The following values can be queried and changed through normal data management channels. If these
variables are being changed directly the fully qualified path, including the screen on which the layer resides
(<screen>.<layer>.<variable>), should be used.

grd_x 4s1 The layer instance's x position rel-
ative to the screen

grd_y 4s1 The layer instance's y position rel-
ative to the screen

grd_xoffset 4s1 The x pixel offset that will be used
to determine the origin of the layer
instance

grd_yoffset 4s1 The y pixel offset that will be used
to determine the origin of the layer
instance

grd_alpha 1u1 The layer instance's transparency
value. The values range from 255
(opaque) to 0 (transparent)

grd_hidden 1u1 The layer instance's visibility. A
value of 0 indicates that the layer
and all of its controls are visible
and a value of 1 hides the layer and
all of its controls

grd_scroll_enabled 1u1 The layer instance's content
scrolling enablement. A value of 0
indicates that the layer can not be
scrolled and a value of 1 indicates
that the layer can be scrolled. This
value can only be modified on lay-
ers that have had scrolling enabled
in Storyboard Designer.

Note

Any change to the following values affects all layer instances.

grd_width 4s1 The layer's width

10

Storyboard Architecture

grd_height 4s1 The layer's height

Group variables

The following values can be queried and changed through normal data management channels.

grd_x 4s1 The group's x position relative to
its layer

grd_y 4s1 The group's y position relative to
its layer

grd_zindex 4s1 The group's z-index position. This
sets the stacking order of groups
within its layer where 0 is at the
back (furthest from the eye).

grd_hidden lu1 The group's visibility. A value of 0
indicates that the control is visible
and 1 that it is hidden

Control variables

The following values can be queried and changed through normal data management channels.

grd_x 4s1 The control's x position relative to
its layer

grd_y 4s1 The control's y position relative to
its layer

grd_width 4s1 The control's width

grd_height 4s1 The control's height

grd_zindex 4s1 The control's z-index position.
This sets the stacking order of
controls within its layer where 0 is
at the back (furthest from the eye).

grd_hidden 1u1 The control's visibility. A value of
0 indicates that the control is visi-
ble and 1 that it is hidden

grd_active 1u1 A value of 1 states that the con-
trol is active (can receive and re-
act to events) and 0 for an inactive
control (cannot receive or react to
events)

grd_opaque 1u1 Indicates if the control is opaque
to events. If opaque (1), the con-
trol will block events from being
handled by other controls. If the
value is 0, the events flow through
the control to ones behind it.

grd_findex 4s1 The control's focus index. This
sets the focus on a control in a nav-
igation sequence, where 1 sets the

11

Storyboard Architecture

focus on the first control, 2 sets
the second, etc. A value of 0 indi-
cates that the control is not focus-
able. In order for a control's focus
index to be changed dynamically
at runtime, the focus value must be
initially set to a non-zero value in
Storyboard Designer.

Table variables

A table contains all of the control variables and also a set of table specific variables. These table specific
variables can be queried but not dynamically changed. In order to change these values in a table, actions
are provided: gra.table.resize, gra.table.scroll. The variables are as follows.

grd_rows 4s1 The number of rows in the table

grd_cols 4s1 The number of columns in the ta-
ble

grd_visible_rows 4s1 The number of visible rows in the
table

grd_visible_cols 4s1 The number of visible columns in
the table

grd_active_row 4s1 The row index of the currently ac-
tive cell

grd_active_col 4s1 The column index of the currently
active cell

grd_row 4s1 The table's current top left row

grd_col 4s1 The table's current top left column

grd_xoffset 4s1 The x pixel offset that will be used
to determine the origin of the 1,1
table cell

grd_yoffset 4s1 The y pixel offset that will be used
to determine the origin of the 1,1
table cell

grd_scroll_enabled 1u1 The table's content scrolling en-
ablement. A value of 0 indicates
that the table can not be scrolled
and a value of 1 indicates that the
table can be scrolled. This value
can only be modified on tables
that have had scrolling enabled in
Storyboard Designer.

Animation Definitions
Animations can have an enormous impact on the application's user experience and are an important part
of any modern user interface. Used well, they can make a relatively dull user interface appear modern
and intriguing. Used poorly, they can waste a user's time and ruin what might have been a highly useful
application.

12

Storyboard Architecture

An animation in Storyboard manipulates variables exposed by the application model. These variables
may be the user-defined variables or they may be the internal variables associated with model element
properties. When the variables are numeric there are a variety of easing functions that can be applied to
transition from one value to another. Many variable changes can be orchestrated to occur at points relative
to one another and edited on a timeline within the design environment and ultimately saved into a named
animation block that accompanies the exported model.

A specific animation can be created that relies on the fully qualified paths to specific variables or a generic
animation can be created that relies on variables that use the context relative naming convention. In both
situations, the definition of an animation is independent from its use.

In order to use or trigger an animation, the definition has to be referenced by an action, which in turn is
associated with an event. The Animation Action is specifically intended for the purpose of launching user-
defined animations designed in Storyboard Designer.

When the visual content of an application is dynamically created, it may not be practical to create anima-
tions within Designer in advance. In these situations it is possible to create rich animations programmat-
ically using the Lua Script Action.

13

Chapter 3. Typical Development
Workflow

Storyboard offers a variety of ways for designers to get started developing their user interface application.
The following section walks through a common approach that is used when the design content is already
available.

Start a New Project: From Photoshop or from
Scratch

The first step is to create a Storyboard project within the Storyboard Designer desktop environment. When
Photoshop design content is available, it can be directly imported and forms the basis of a new Storyboard
application. In this scenario, the initial width and height of the screens are set to be the Photoshop canvas
size. All of the layers within the Photoshop file are maintained as Storyboard layers and all of the rendered
Photoshop content is imported as controls with image or text render extensions.

If Photoshop content is not available for import to bootstrap an application, a Storyboard project can be
started from scratch. A new project wizard walks through the process of setting up the initial project
parameters such as the target screen size. This creates a blank project with a single screen and a single layer.

Regardless of the starting point, using Photoshop import or starting with a blank application, a Storyboard
project initially has a single model file named the same as the project and the file extension GDE. This
GDE file contains the structure of the application, the event and action bindings, and the variable and
animation definitions.

Create and Organize Screen Content
The application view within Designer shows an outline of the structure of your application. From this
view you can add new screens, layers, and controls to your application and expand it to include the visual
structure and organization appropriate for your product.

Storyboard uses industry standard formats for assets, such as images and fonts, as much as possible. When
a project is created it is automatically populated with an images and fonts directory. To import new images
or fonts to use in your project, you can simply copy files with supported formats (png, jpg, bmp, tga, ttf,
otf) into these directories. The assets are available for use within your project to set as a property on a
render extension or by dragging and dropping into a particular screen canvas directly.

Bind Events to Invoke Actions
As you introduce multiple screens into your application, you can switch between them using screen tran-
sition actions. There are a number of different screen transitions ranging from an immediate transition to
elaborate animated screen transitions using 3D transforms to flip and shape the displays.

In addition to actions for screen transitions, there are actions for starting and controlling animations, ad-
justing the values of variables, sending events to other applications, and integrating with Lua to invoke
scripted glue logic to further control the application. After the main structure of an application is created,
you can add and customize actions to modify the user interface.

14

Typical Development Workflow

Simulate and Export Model for Engine
To enable immediate visual validation of the user interface, Storyboard Designer includes a built-in sim-
ulator. This simulator uses the same runtime engine that runs on your target but is configured to execute in
the desktop environment. The simulator uses the same export process that you would use for an embedded
environment but automatically incorporates a launch stage to make it fast to implement structure, bind
actions, and check the behavior in a rapid development cycle.

Export to Android and iOS platforms using the an export wizard that creates a package that's ready to run
on your mobile platforms. Exporting an application to a touch-enabled mobile device provides a simple,
yet effective, method of experimenting with user groups on different design scenarios without having to
deal with the instability (or incompleteness) of an early embedded target hardware configuration.

For deep embedded systems where a filesystem may not be available to host the assets from the application,
the export process involves creating a C/C++ header file. This header file is included in your BSP or system
image and compiled using the same toolchain you use to build all of the non-user interface elements of
your product.

15

Chapter 4. Storyboard Designer
Environment

Storyboard Designer is a design and development environment for creating full-screen, deployment-ready
applications for embedded platforms using the Storyboard Embedded Engine.

Using Storyboard Designer designers incorporate graphic content and artwork directly into the application
design process. The imported images (gif, jpeg, png, psd) are used as control surfaces that application
developers can bind action behavior to, based on externally generated input events.

Graphic designers already have a set of design tools for creating and manipulating images. Storyboard
Designer is not meant as a replacement for these tools, but is intended to provide a binding environment
where static images can be animated into multi-screen applications by allowing graphics designers to easily
import their work into an application design.

Storyboard Designer is intended for use by both graphic designers and embedded applications developers
and is based on the extensible Eclipse framework (www.eclipse.org) [http://www.eclipse.org/].

Embedded software developers typically work in C or C++ development environments. Storyboard De-
signer integrates into the CDT, the most common Eclipse based embedded development environment,
so application user interface development can easily be done in parallel with other embedded software
development.

Storyboard Designer Workbench
When Storyboard Designer starts, the user is presented with an initial empty working environment for
application development as shown in the following image. Storyboard Designer presents the user with
a main editing area that displays a visual, WYSIWYG, representation of the application screens as they
are being developed. The editor is the primary interface for development and design of the application.
The editor is opened, like any other standard editor in the Eclipse environment, by double-clicking on any
Storyboard Designer file, or right-clicking and selecting File > Open.

The editor area is surrounded by dockable views that present editing information to the user as the appli-
cation is being developed. Many of these views, such as the layer or application view, provide information
relative to the selection in the current editor. Additional views can be added into the current display by
selecting Window > Show View and then selecting the additional views.

The selection of views and their arrangement around the editor area is called a perspective. The default
Storyboard Designer perspective layout can be customized by dragging, resizing, and re-docking views in
an arrangement that is convenient to individual developer or designer workflows. It is always possible to
reset the layout of the perspective to its default by selecting Window > Reset Perspective from the main
menu.

16

http://www.eclipse.org/
http://www.eclipse.org/

Storyboard Designer Environment

For more details on configuring the workbench refer to Help > Help Contents > Workbench User's Guide

Eclipse is an extensible framework with a rich set of plugins available from multiple software vendors.
Among other integrations, team collaboration plugins for GIT, Mercurial, ClearCase, SVN and CVS are
all readily available. The Eclipse marketplace (marketplace.eclipse.org) contains a comprehensive listing
of available plugins and extensions.

Anatomy of a Storyboard Designer Project
Storyboard Designer manages its projects within a filesystem directory referred to as a workspace. The
workspace is used to limit the scope of file resources to just those files in the host filesystem that are relevant
for the application design. Storyboard Designer projects correspond to the root directories contained within
the workspace directory.

When a new Storyboard project is created, using File > New > Storyboard Application…, it creates an
initial project structure in the workspace that contains several default directories in addition to the main
Storyboard application design file.

17

Storyboard Designer Environment

The images, fonts, scripts, templates and events directories are automatically scanned for content and that
content is integrated into the application designer tools. In order to import content from the filesystem
into these directories, you can use the File > Import > General > File System option or the standard system
copy and paste or drag and drop from other applications.

Each directory scans for a different type of content:

events This directory and its subdirectories are scanned for event definition files, which are text
files that have an extension of .evt. The events contained in the event definition files are
automatically included in the action trigger event list. Event definitions are automatically
managed by the Designer framework when new events are added or removed using the
New Action Wizard.

fonts This directory and its subdirectories are scanned for TrueType™ font files. In general,
these font files have the extension of .ttf. The fonts discovered are automatically added to
the list of available fonts in the font selection dialog. OpenType™ and TrueType container
formats are not supported by Storyboard at this time.

images This directory and its subdirectories are scanned for image file content. Supported image
file formats include gif, jpeg, bmp and png files. Photoshop™ PSD files can be imported
directly as an application or as the component images using the File > Import > Storyboard
Development > Photoshop PSD File menu option.

scripts This directory is scanned for Lua (www.lua.org) [http://www.lua.org/] scripts which have
the extension of .lua. The functions that are found in these scripts are automatically
added to the list of available functions presented in the Lua action argument configuration.

templates This directory is scanned for Storyboard Designer template files. Valid templates are au-
tomatically added to the list of available templates or new actions. For more details on

18

http://www.lua.org/
http://www.lua.org/

Storyboard Designer Environment

creating and working with templates, refer to the document sections Working With Tem-
plates and User Defined Actions.

As changes are made in the filesystem, the workspace should refresh automatically and the changes are
reflected in the Storyboard Designer user interface. An automatic refresh may be delayed due to system
activity and can be forced at any time by selecting a project or file in the Navigator view and selecting
Refresh from the right-click menu.

Storyboard Designer Editor
The Storyboard Designer editor is the central location for all design activities for your application. It
provides a visual representation of all of the screens of the application and allows designers to edit the
screen content and get immediate feedback about the look and feel of the application.

Editing Content
The default editing mode is to display and edit the entire application, showing all screens and their com-
posited layers together.

If, instead of looking at all of the screens of an application together, you want to focus on editing and
working with one particular screen, you can right-click in the editor and select Edit > Screen, which opens
up a new editor window with that screen's content shown.

If you want to edit the layer contents only, independent of the screens to which they are bound, you can
right-click in the editor and select Edit > Layers which opens up a new editor with all of the selected layers
shown individually. If changes are made to a layer in this mode, the change will be reflected in all of the
screens that reference the changed layer.

The right-hand side of the editor contains a fly-out palette toolbar that provides the basic visual design
elements for the application; screens, layers, and controls. These can be selected and dropped onto the
editor to start building up the application.

Additional editing functionality is available through the right-click menu while in the editor, as well as
from the main menu. This is where you will find functions to manipulate control size, alignment, and z-
order/front-back placement, as well as the creation of new controls, layers, and screens.

Content can be moved within its container by selecting one or more items and then using the arrow keys
to move the item. By default, the movement is in 10 pixel increments when using the keyboard, but if the

19

Storyboard Designer Environment

SHIFT key is held down while using the arrows the content will move one pixel at a time in the desired
direction.

There are a number of keyboard shortcuts for common operations these can be displayed on-screen by
selecting Help > Key Assist... from the main menu.

Editor Toolbar

In addition to the editing options available right click menu, the toolbar provides functionality that is
context sensitive to the editor being used. When a Designer file is being edited (and the editor area has
focus) the toolbar provides short cuts to several common operations.

Storyboard Simulator This will export the Designer file being edited to a Storyboard Engine file
and simulates it using the host based Storyboard Engine configuration.

Zoom Display This controls the current zoom level of the display. There are two ways
to zoom in an out with the scroll wheel.

1. CTRL+MouseScroll (Windows/Linux) or COMMAND+MouseScroll
(Mac) using a wheel mouse or a touchpad will zoom the editor in/out
while keeping the selected model object centered on the screen.

2. CTRL+SHIFT+MouseScroll (Windows/Linux) or COM-
MAND+SHIFT+MouseScroll (Mac) using a wheel mouse or touch-
pad will zoom the editor in/out on the area at the center of the editor.

Align and Resize These toolbar actions provide a convenient alternative to manual align-
ment by aligning the selected controls automatically with one another.
When a single control is selected the alignment is performed relative to the
screen. When multiple controls are selected, the alignment is performed
relative to each other.

New Model Elements These toolbar actions provide an alternative to the palette for the quick
construction of screens, layers and controls.

Control Outline These toolbar actions control how the control content is displayed within
the editing environment. By enabling the control outline, a border will
be drawn around controls and layers. By enabling the wireframe mode,
no control content will be drawn, but an outline of the controls is drawn.
These modes can be used to optimize the application layout to avoid un-
necessary damage and redraw operations.

Wireframe The wireframe mode turns off all of the render extension drawing within
the controls and shows only an outline of the controls, layers, and screens
similar to what is provided by the Control Outline functionality.

This functionality is useful to minimize the amount of control overlap that
occurs so as to prevent excessive redraw damage areas.

Direct Editing
In addition to the standard model editing functionality, some render extensions have direct edit function-
ality. To enable the direct edit on a control with one of these render extensions, the user needs to do a
slow double click on the control.

20

Storyboard Designer Environment

3D Model When the direct edit mode is activated, a set of xyz axes will appear in the
bottom left corner of the control. At that point the user can use their mouse
to move the model. Holding the shift key allows the user to rotate the model
using their mouse. As well, holding either the x, y, or z key isolates that
axis when either translating or rotating the model. When the user is finished
editing the model, they just need to click anywhere outside of the control to
end the direct edit.

2D Polygon Editing When direct edit is activated, the user can create and edit a polygon on the
screen using hotkey toggles. Hold 'shift' and click within the control bounds
to create new vertices (ideally, 3 vertices are needed to have a sufficiently
visible polygon). Hold 'control' and click on a particular vertex to delete it
from the polygon. Hold 'alt + shift' and click near an edge to create a new
vertex splitting that particular edge. Vertices can be moved by simple click
and drag. Exit quick edit by moving the mouse out of the control bounds.

Storyboard Resource Export Configuration Ed-
itor

The Storyboard Resource Export Configuration editor provides the ability to create configurations for how
resources should be exported from Designer. This allows for fine grained control over how and when
resources should be exported from the design environment.

Managing Configurations
The Resource Export Configuration editor allows for the creation, deletion, and resetting of a configura-
tion. The following toolbar controls these operations.

The combo box allows for the selection of a configration.

The add button will invoke a dialog that allows for the creation of a new configuration. The following
dialog is invoked

21

Storyboard Designer Environment

A name needs to be entered for the new configuration. The name must be unique. You can select a base
configuration to base the new configuration off of. This will make a copy of the options that have been
applied to the resources in the base configuration and apply them in the new configuration. When finished
click on the "OK" button to create the new configuration or the "Cancel" button to abort the creation of
the new configuration.

The delete button will remove the currently selected configuration. Note that the default configuration
cannot be deleted.

The revert button will reset all of the options on the resources to their default values.

Resource Tree
The resource tree allows for the selection of individual resources so that options can be changed on indi-
vidual resources.

The filter allows for the searching of resources based on name.

The tree is grouped by each of the different resource types, images, fonts, scripts, and other. There is
a right-click menu that can be invoked that will allow for the creation, deletaion, and reverting of the
current configuration. It also allows for the generation of image maps if the image map option is selected.
References to currently selected resource can also be searched for in the model.

The "Add Resource" button at the button of the tree allows for the addition of resources that are not in the
images, fonts or scripts directories. The "Add Font" button allows for the addition of a font that is shipped
by Designer. If the storage type for the configuration is "VFS" and the font export format is "Bitmap" the
a size can also be selected for the font.

Resource Export Options
Resource options are set at a global level and at an individual level. All resources will use the global setting
for an option if the option is not changed at the individual level. This allows for a quick setting of options
for the general case of how a resource should be exported but then also allows for more granular control
over individual resources that need to be exportted in a different way. For example, most images in an

22

Storyboard Designer Environment

application may have alpha. So in an VFS configuration, most images should probably be exportted as the
"DIRECT RGB8888" format. However for a big background image, that has no alpha, it may make sense
to export that image as the "DIRECT RGB565" format as this will save on space.

There are two options that are applied to the configuration. There is the name and the storage type. The
name must be unique and the "Default" configuration cannot be renamed. The options for the storage type
are: All of the global options are mirrors of the individual options that can be set on an individual resource.
There are global options and individual resources for images, fonts and scripts.

Filesystem This will export resources to a filesystem. This selection disables the need
for a majority of the options on the resources as they will be loaded and
intepretted from the filesystem based on the type of resource they are the
exception to this rule is script files. They can be exported as compiled scripts
to a filesystem.

Virtual Filesystem This will export resources in a virtual filesystem format. This selection is
only available for use with the C Header exporter. This enables a majority of
the option as the C Header export is used with systems that have constrained
resources.

23

Storyboard Designer Environment

When the VFS format is selected as the storage type, the "Font Export Format" option is enabled for
the configuration. This is a global option as the mxing of bitmap and truetype font configurations is not
currently supported. The choices for the "Font Export Format" are:

TTF This will export all fonts as a ttf file. This file will require the TrueType font manager to be
used. Each ttf file that is needed will be loaded in to memory and the glyphs that are used will
be stored in a cache in the heap.

Bitmap This will export each individual glyph in a font file as an alpha map. The size of each individual
pixel in the alpha map can be controlled through the "Font Bitmap Depth" option.

When the "Font Export Format" is set to the "Bitmap" option then the "Font Bitmap Depth" option will
be enabled. This option is something that can be controlled on each individual font size resource as larger
sizes may take up more space. The choices for the "Font Bitmap Depth" option are:

1 Bit This will export the bitmap font as an alphamap that has 1 bit per pixel in the alphamap. This
bit determines if a pixel should be on or off.

2 Bits This will export the bitmap font as an alphamap that has 2 bits per pixel in the alphamap. These
2 bits represent the alpha value that should be used for that pixel

4 Bits This will export the bitmap font as an alphamap that has 4 bits per pixel in the alphamap. These
4 bits represent the alpha value that should be used for that pixel

8 Bits This will export the bitmap font as an alphamap that has 8 bits per pixel in the alphamap. These
8 bits represent the alpha value that should be used for that pixel

If the "Font Export Format" is set to the "Bitmap" option then the "Font Glyph Map Width" option will be
enabled. This option is an option that can be set on each individual font size. It controls how wide a glyph
map width can be. It is useful if a system has alignment restrictions when rendering buffers. The "Max
Glyph Width" checkbox will set the "Glyph Map Width" to the width of the largest glyph in the font. This
creates a single strip of glyphs in the glyph map.

The "Image Export Format" option will become enabled when the "VFS" option is specified as the "Storage
Type". The available image export formats are:

Native Format This will export the image in its native format, such as a PNG or JPEG.
This will require the image to be decoded at runtime which will require
heap.

Direct RGB8888 This will export the image as an uncompressed image that has 32 bits
per pixel. This image can then be drawn directly from storage without
the need for heap.

Direct RLE RGB8888 This will export the image as run length encoded image that has 32 bits
per pixel. This image can then be drawn directly from storage without
the need for heap, but will require the pixels to be expanded as it is
being draw, which may incur a perforamance hit. It will in most cases
take up less space.

Direct RGB565 This will export the image as an uncompressed image that has 16 bits
per pixels. This image can then be drawn directly from storage without
the need for heap. The image will take up less space than the DIRECT
RGB8888, but it will not support alpha. Also gradients may show
banding due to a reduction in color fidelity.

Direct RGB565 Dithered This will export the image as an uncompressed image that has 16 bits
per pixels that has been dithered. This image can then be drawn di-

24

Storyboard Designer Environment

rectly from storage without the need for heap. The image will take up
less space than the DIRECT RGB8888, but it will not support alpha.
Gradients should not have banding due to the dithering.

Direct Indexed This will export the image as an uncompressed image that is palette
based. This image can then be drawn directly from storage without the
need for heap. The image will take up less space than the DIRECT
RGB8888. Colors may look different because they will be matched to
colors in the palette.

Direct RLE Indexed This will export the image as an run length encoded image that is
palette based. This image can then be drawn directly from storage with-
out the need for heap, but will require the pixels to be expanded as it is
being draw, which may incur a perforamance hit. It will in most cases
take up less space.

The "Image Start Alignment" option will become enabled when the "VFS" option is specified as the "Stor-
age Type". The value that is specified for this option is the alignment that is used for the image data in
any of the direct rendering image format options. The "Image Map Width" option will become enabled
when the "VFS" option is specified as the "Storage Type". This is an option that can be set individually
on image maps. This will set the width that the image map will use. The height of the image map will be
set to whatever is required to fit all images in the image map.

The "Script Export Format" option controls how lua scripts are export. The options are:

Raw This will export the script file as plain text. It will need to be compiled by the Lua engine when
it is loaded.

Bitmap This will precompile the Lua file when it is exported, so that the Lua engine does not need
to do it at runtime.

Additionally each resource has an "Include in Export" option. If this option is unchecked, the resource
will be omitted from the export.

Application Footprint Preview
This preview provides feedback on how much memory or storage an resource export configuration will
take up when it is used. For more information on this, see the Metrics view section in this document.

Storyboard Designer Views

Actions View
The Actions view provides a display of all of the available actions that are in context for the given selection
in the editor.

25

Storyboard Designer Environment

Actions can be added through the right-click menu in the editor, Add > Action… or in the Actions view
directly.

The content of the action list can be sorted by selecting the action table title. When actions are sorted by
their triggering event, the order in which they appear will also correspond to the order in which they will be
evaluated within the same context. If two actions are bound to a gre.press event on the same control,
for example a Data Change and then a Screen Fade, then the first action in the list will be executed (Data
Change) before the next action (Screen Fade). The order of these events can be adjusted by right-clicking
the event and selecting Move Up or Move Down as required.

The content of the action list is automatically populated based on the Designer model object selected in
either the editor or in the Application Model view. The content of the list can be populated in several ways:

Selection Only This shows only the actions associated directly with the selected model
object.

Sub Hierarchy This shows the actions of the selected model object and all of its child
model objects.

Application Hierarchy This shows all of the actions in the project.

In addition to controlling how the list is populated using the toolbar selections, it is also possible to use
the name filter at the top of the list to match against specific event names. This is particularly useful when
used in conjunction with the Application Hierarchy to search the entire project for custom events.

The triggering event, action type, and context can all be edited inline in the action table. Each action also
has its own set of parameters or configuration options. These values can be changed in the lower display
area of the Action view once an action selection is made. When the action types are changed, as many
argument values from the original action will be migrated to the new action as long as the argument names
and types match.

Application Model View

The Application Model view displays a tree representation of the model objects that make up the Story-
board application.

26

Storyboard Designer Environment

The tree representation aligns with the Storyboard model representation and allows editing operations to
be performed on elements that may not be visible within the editor. For each of the application, screen,
layer, and control objects the Application Model displays the Actions and Data Variables associated with
that model object.

The visibility of the layer instances and controls can be quickly adjusted through the Application Model
view by toggling the setting in the visibility column. The changes made here will be immediately reflected
in the editor and will also be reflected in the Storyboard Engine runtime file as the initial setting for the
layer instance or control.

Since layers are displayed as layer instances, the tree will show layer and control content several times in
the tree. If the Link with Editor toolbar option is enabled, when a model object is selected in the Applica-
tion Model view the editor will automatically scroll to present the appropriate context of their selection.
The same behavior can be achieved by double-clicking on a model object if the view's content is not syn-
chronized with the editor.

The Application Model view tree also displays all of the scripts, animations, and unused layers that are
currently a part of the application design.

You can copy and paste model elements, such as screens, layers, controls, and actions, from one application
to another using this view.

Animation Timeline View
The Animation Timeline view provides an editing environment for creating the animation blocks that are
used by the animation action.

27

Storyboard Designer Environment

The initial Animation Timeline presentation displays a list of all of the animation blocks defined in the
application. Those animations whose names are highlighted in bold represent animations that are currently
referenced. The list on the right is updated, based on the selected animation, to show a list of all of the
locations in the project where this animation is currently referenced.

Double-click on an animation or select the Edit in Timeline button to change the display mode of the
Animation Timeline from a list of all animations to a timeline-based editor focused on the selected ani-
mation block. To create a new animation, right-click in the list and select Add Animation, or select Add
Animation from the toolbar.

The timeline editing mode displays a list of the variables that are modified during the animation and a
timeline view indicating the starting time offset and step duration for a particular animation step relative
to all of the other animation steps running in this block.

To see the properties view to modify values, click on an animation step.

Property values can be edited / calculated inline.

To duplicate a step, double-click beside the animation step.

Clicking an animation step displays a pop up window that displays all of its information when the step
is too small to do so.

To easily line up the animation steps in the timeline, select multiple animation steps and use the align left,
align right, distribute, or pack tools.

Using the 'Design Context' drop-down list, select a context that the animation will use to resolve variables.
This context is also used to determine which screen is displayed during an animation preview (see below).

Right-click on an animation group to duplicate its functionality and assign it to another variable.

You can drag and drop the block within the display to adjust the starting offset or lengthen or shorten
its duration by resizing the block. The start, end values, and the rate of change can be adjusted inline
by double-clicking the values or by right-clicking the block. Animation steps can also be reordered by
dragging and dropping them in the list. For animations with many steps, you may want to choose the
compressed display option from the menu.

If you want to make a more significant change to the animation step, or to change several values all at
once, select a step and click on the 'Change Variable...' button in the properties view and the Animation

28

Storyboard Designer Environment

Step Dialog will open. You will also get this dialog if you right-click and select Add Animation Step to
add a new variable to animate in this block.

The Animation Step Dialog allows you to select the variable that you want to animate. You can fine tune
the characteristics of the animation step including how you want the values to change and when.

Working with Animations

There are a number of ways to get started creating animations. You can manually create a new animation
from the Animation Timeline View and add the variables to the animation one-by-one, however Storyboard
provides a few shortcuts to make this process easier.

Record Animation

To create new animations, Storyboard provides a mechanism that allows you to record a series of changes
to your application and have those changes automatically incorporated into a new animation. This capa-
bility, Animation Recording, can be accessed from the top menu bar.

The animation recorder tracks all changes that are made to model objects in the application. When the
recording is finished it automatically creates new variables for those static values that have changed. It
then gathers all of the changed variables and places them into a new animation ready to replay that visual
change.

While recording, you have the ability to take snapshots. Snapshots cause subsequent steps created by
changes during the recording to be offset by the duration of the previous step. This way, you can create

29

Storyboard Designer Environment

a sequence of consecutive animation steps rather than have them execute simultaneously. The snapshot
action is located right next to the recording action, and will only be enabled if you are currently recording.

Note

When using the animation recorder, any structural changes made to the model will be automati-
cally reverted and lost at the end of the recording. The model recording only tracks changes to
existing model properties and variables, creating variables automatically for any static elements
that change.

This means that, if during the recording any controls, variables, actions, or any other model ele-
ments are created, they will not be captured in the recording and they will also not be present in
the model when the recording is stopped.

Add Animation

To quickly add new variables to either a new or existing animation, use the Animation Variable command
that is available from the editor toolbar or from the right-click menu on many model objects.

A dialog displays all of the variables that are associated with the current selected object. You can quickly
select the variables you are interested in, select the animation that you would like them to be applied to,
and immediately start fine-tuning that animation.

Preview Animation

Preview the currently selected animation by clicking the animation preview action. An uneditable version
of the application is displayed in a dialog and runs the animation. The bottom bar contains actions that
control the preview. Play/Pause will stop and restart the animation from the current frame. While the
preview is paused, use the Fast Forward/Rewind buttons to move ahead/back one frame at a time. Interact
with the progress bar to jump to any frame and click on the Replay button to reset the animation to frame
0 in preparation for another run.

30

Storyboard Designer Environment

By default, the preview window chooses the screen to display by looking at the animated variables. How-
ever, if the user has selected a design context for the animation in the timeline, that context is used to
determine the screen to display in the preview.

Images View
The Images view provides a thumbnail presentation of the images that are currently included in the appli-
cation design.

The content for the Images view is automatically pulled from the image file content in the images direc-
tory of the Storyboard project. New content imported into this directory, upon a workspace refresh, is
automatically shown in the Images view. Supported image file formats include PNG, JPG, GIF and BMP
files. In order to import Photoshop PSD file content, the images must be imported using the File > Import
> Photoshop PSD File wizard.

You can drag and drop images from the Images view directly into an application design. By default, a
new control is created that matches the image's size and the image source is a static value pointing at the
drag and dropped image.

Within the Images view it is also possible to quickly switch an image that is used in one context to another
using the Swap Image With... right-click menu. For example, if a number of controls are using an image as
a button background and a new image is available to update the look, you can import the new image, select
the existing image, and choose Swap Image With... to quickly change all instances within the application
to the new look.

31

Storyboard Designer Environment

All files contained within the images folder are processed as images, regardless of their file extension.
If an unrecognized image file is encountered, by default it will not be displayed. This behavior can be
adjusted by deselecting Show Only Images in the view's drop-down menu. This menu also provides
the ability to group images by directory which is a convenient way to classify images that are used in
different parts of your user interface.

As an application evolves, it will often accumulate a number of unreferenced or duplicate resources. The
Image view offers a few utilities to help manage these images.

• The Resource Clean Up toolbar action prunes and deletes unreferenced images from the application
design.

• The Consolidate Images toolbar action identifies duplicate images, references all consolidated into a
single resource, and removes duplicate images from the workspace.

• The Trim Images toolbar action works on selected images to remove all of the extraneous transparency
that surrounds non-transparent content. This can significantly impact the rendering performance on
systems without hardware graphic rendering capabilities.

• The Split Images toolbar action works similarly to the Trim Images option but transforms a single
image with significant areas that are completely transparent into multiple images with that transparency
trimmed away.

Layers View

The Layers view provides a thumbnail display of the layers used by the currently selected screen and also
displays a thumbnail of all of the other layers that are available for use but are not bound to the selected
screen.

32

Storyboard Designer Environment

Layers are categorized as either being included on the current screen or not. Layers can be added or re-
moved from the current screen by dragging and dropping them either into or out of the current screen area,
or by using the delete key.

Layers are listed according to their front (top) to back (bottom) order z-order presentation. Manipulate the
order by dragging and dropping the layers within the view or using the toolbar buttons. In addition, the
Layer view provides the ability to change the visibility within the application. If the visibility or z-order
are changed, the change is immediately reflected in the editor and will also be reflected in the Storyboard
Engine runtime deployment.

Using the toolbar controls in the Layers view it is possible to create new layers and also to open up the
Layer editor mode to work with layers independent of the screens with which they are associated.

Metrics View
The Metrics view shows how much memory and storage is going to be used by the resources that are
included in a Storyboard application. Resources account for a large majority of the memory and storage
cost ascociated with a Storyboard application. If a Storyboard application needs to reduce its memory and
storage costs, then its resource use is an area that should be investigated to see if there are sections of the
application that can be redefined to reduce the use of resources and therefore save on the memory and
storage costs

The memory and storage cost of a resource is affected by how it is stored. In the case of a storing resouces
on a conventional filessytem, images are decompressed in to memory and font glyphs are managed by the

33

Storyboard Designer Environment

freetype font engine in a cache. In the case where a virtual filesystem is being used, there are options to
control how images and fonts are stored and accessed and this will have an impact on how much memory
and storage they will consume. The configuration combo box allows you to select the resource export
configuration to show the memory and storage costs for. The edit button next to the configuration combo
box will open the Resource Export Configuration editor, which allows for creating new configurations that
can have different settings applied to individual resources. For more information on the Resource Export
Configuration dialog, see the section in this document.

The model cost for a Storyboard application is tied to the runtime that is being used. Different runtimes will
have different model costs due to the differences in internal storage types used in the runtimes. Selecting
different runtimes will show how much the model will cost while the engine is running with the Storyboard
application.

The outline section in the Metrics view shows the breakdown of the memory and the storage taken up
by each type of resource, which are images, fonts, scripts, and other. These sections can be expanded to
show each individual resource. A resource can be selected and a menu that is invoked by right-clicking
on the resource will allow for searching of the model to show which model elements are referencing that
resource. There is also the option to view what an image looks like to provide context, as well as the option
to edit the resource in the currently selected resource export configuraiton. The filter text field can be used
to search for a resource by name.

34

Storyboard Designer Environment

The resource details tab shows a break down of resources being used by each element in the Storyboard
application. The element can be selected and show in the application view by selecting that option from the
right click menu. This tab is useful for seeing which elements in the Storyboard application are taking up
the most memory and storage. The filter by name text field can be used to search for an element by name.

It should be noted that this is just the memory cost for resources. Things like circles, polgyons, complex
screen transitions, and code that is written in Lua will have a memory cost ascociated with it. For example,
complex screen transitions will need to composite the current screen and the next screen in to offscreen
memory buffers. This would cost an addition width * height * bit depth * 2 in memory usage to perform
that complex screen transition.

Navigator View

The Navigator view is a standard filesystem style explorer limited to showing only content available in
the Storyboard workspace.

35

Storyboard Designer Environment

The Navigator view only displays content that has been imported into the workspace and starts with the
top level Storyboard Project directories that have been created. Since the workspace allows multiple Sto-
ryboard projects to be shown, it is possible to work on multiple projects concurrently all within the same
workspace with multiple editors open targeting different Storyboard projects. Content and resources can
be copied and pasted among the different editors.

The Navigator view provides a variety of filters to hide/show different file types as well as the ability to
group projects together as 'working sets' and then to only display the content from those working sets. For
more details on configuring the Navigator and filtering workspace content refer to the Eclipse help Help
> Help Contents > Workbench User Guide.

Outline View

The Outline view provides an overview of the entire editor. The outline content changes to reflect an
outline of the editor that currently has focus. Within the Designer environment there are two outlines of
interest, the Storyboard editor outline and the Lua editor outline.

36

Storyboard Designer Environment

The Storyboard editor outline displays a scaled visual presentation of the entire contents of the editor. If the
editor is in Application mode then all of the screens of the application will be shown. If it is in Layer mode
then all of the layers will be shown, and similarly for the other editor modes. By moving the highlighted
area within the Outline view it is possible to change the viewport of the current editor.

The Lua script editor outline displays a listing of all of the identified functions in the file. Double-clicking
the function name provides quick navigation to those functions.

Problems View
The Problems view shows a list of all problem markers that are created within the workspace. Storyboard
provides a project analysis mode that runs in the background to examine Storyboard models and report on
design concerns. To enable or disable this analysis mode you can change the Storyboard workspace prefer-
ence setting in Windows > Preferences > Storyboard > Enable Background Storyboard Project Analyzers.

When the Storyboard Project Analyzers are enabled, the model will be scanned and analyzed and discov-
ered issues will be reported into the Problems View as the workspace resources change. Issues that are
scanned and reported include:

37

Storyboard Designer Environment

• Mismatched image color depths. If a 32bit color image is used with a 16bit color display there is a
possibility the image will be distorted on the target.

• Fill hides content. If a fill masks on top of other content it can be an ineffective use of processing
resources on target devices.

• Missing render extension content. For example, a control with an image render extension that is not
defined or does not exist. This may cause the embedded target to perform additional computations.

• Scaled or rotated static image content. Since static images do not change at runtime, the work required
to scale or rotate an image could be replaced by a fixed cost of rotating or scaling the image during the
design. This will reduce the amount of processing required at runtime.

Properties View
The Properties view displays information about the current selection in the editor and also provides the
ability to change and adjust the properties of that selection. The Properties view is the primary editing
location for fine tuning the visual presentation and adjusting data bindings of the application.

For each model element, application, screen, layer, and control, there is a different property interface that
provides access to those items that are most relevant to the selected context. The following is a list of
some of the property pages.

Application The application properties, active when the editor background is selected, dis-
plays the application name, size, and color properties.

Screen The screen properties, active when a screen is selected, displays the screen
name and indicates if the screen is the start screen for the application.

Layer Layers and Layer Instances share a common set of property pages. A Layer
Instance is simply a Layer that is associated with a particular screen. Changes
made to a layer's size or its controls will propagate to all layer instances. Posi-
tion, opacity, and 3D rotation properties are properties associated with a layer
instance, not the layer itself.

38

Storyboard Designer Environment

Group Group properties contain the name of the group as well as information about
the group's origin. In this property panel you will also find the functionality
for automatically reconfiguring a group's origin based on it's control content.
This is useful when you are taking a group and then converting it for use in a
more generic Storyboard Designer template.

Control Controls contain the most sophisticated property pages. In addition to the
name, size, and position information, the property page also contains the con-
figuration parameters for the render extensions associated with that control.
The render extensions are listed in the Z order (front to back) that they will be
rendered within the control. This can be adjusted by dragging and dropping
the render extensions within the list entry.

Render Extensions Render extension property pages show the argument details of the selected
render extension. This is the same information as is shown within the Control's
property panel, but without all of the additional details associated with the
control.

Actions The property pages for actions show the parameters that are available for edit-
ing and the presentation changes based on action type. The content that is
shown here is the same as the information presented in the Action View. In the
case where multiple actions are selected, the content can be changed across
the entire selection.

When multiple elements are selected, the Properties View attempts to show the most suitable content
possible. If all of the selected elements are the same, then the properties view will display the common
properties and any changes that are made will apply across all of the selected elements.

In certain cases, such as when multiple controls with different render extensions are selected, it may not
be possible to provide a completely synchronized display. In these cases the display will show a common
set of properties and hide the properties that are not common among the selected elements.

Component View

The Component view provides users with a list of Storyboard Designer components that are available for
use in this project. The list of available components is generated automatically from the contents of the
project's templates directory.

When a component is selected, its description, along with a graphical preview of the component, are shown
if available. To create a new model object based on that component, select one of the components in the
list and drag and drop it into your application.

Not all components create new Storyboard model objects. Some components simply enhance the function-
ality of an existing object. In this case, when a model object is selected you can right-click the object and
select Component Apply to access a list of available components that can transform the selected object.

For more information about creating components, see the document chapter Chapter 23, Reusable Graph-
ical Components.

Variables View

The Variables view is similar to the Actions view in that it displays all of the data variables that are in
the context of the current selection.

39

Storyboard Designer Environment

Once a variable is defined and associated with a particular model object context (application, screen, layer
or control) then the variable can be referenced as a parameter for actions and render extensions.

There are two different types of data variables that can be defined. A normal variable contains a name,
a type (i.e. number, string), and the value matching the type that should be used when the variable is
referenced. To facilitate working with repetitive data within a table control, a special type of variable called
a table cell variable can be created. This variable contains all of the same properties as a normal variable,
but is extended to contain additional row and column information that can be used to specialize a particular
value at a given table row and column.

The content of the variable list can be sorted by selecting the appropriate variable table title and the variable
values can be edited inline in the variable list by double-clicking on the appropriate field that you wish
to change.

Similar to the Actions view, the variables that are shown in the Variables view are automatically populated
based on the Designer model object selected in either the editor or in the Application Model view. The
content of the list can be populated in several ways:

Selection Only This shows only the variables associated directly with the selected mod-
el object.

Sub Hierarchy This shows the variables of the selected model object and all of its child
model objects.

Application Hierarchy This shows all of the variables in the application, regardless of what the
current selection may be.

In addition to controlling how the list is populated using the toolbar selections, it is also possible to use the
name filter at the top of the list to match against specific variable names. This is particularly useful when
used in conjunction with the Application Hierarchy to search the entire project for a variable.

40

Storyboard Designer Environment

Variable Creation

New variables are frequently created at the point where they are required, for example, within the property
display for a render extension or the properties for an action argument. When variables are created in this
context, then their types will automatically be determined from the context of use. However, variables can
also be created directly from within the Variables view, in which case the user can select the type of the
variable. It's important to match the type of the variable to its intended use. For example, text variables
can't be used as adjustments for numeric values and vice versa.

The variable creation opens the New Variable wizard. From within this dialog you can select the name
of the variable, its data type, and the value to associate with the variable. From this dialog you can also
create table cell variables that span a particular row/column range

By default, the variable will be created and associated with the current application, screen, layer, or control
that was selected when the New Variable wizard is launched. However this association can be changed
on the second (optional) page of the New Variable wizard where the variable can be explicitly assigned
to a different model object.

Note

The type of a variable is important for the Actions or Render Extensions that may use them. If a
variable is mistyped, such as a string variable that is created but referenced in a location expecting
an RGB color value, then the results are undefined. In general, you should create variables from
the Actions or Render Extensions that will be using them to ensure the proper typing occurs.

Generating Events on Variable Change

It is possible to associate a user-defined event to be generated when a variable's value is changed. These
events are designed to facilitate the synchronization of user interface elements that may not be directly
associated with the variables whose data is changing. A typical scenario would be to monitor the position

41

Storyboard Designer Environment

or location of a control and send a notification when it changes in order to maintain a corresponding
relationship in another control.

In order to specify the event to be generated, simply enter the event name into the Event column of the
desired variable or select the variable from the list and right-click and select Bind Event which will open
the event definition list allowing you to pick from existing events or create a new one.

The variable change events are designed to be used to synchronize the user interface display with an
updated variable value and are not meant to be used as counters for each changed value of a variable. For
each variable change an event is added to the event queue only if there is not already an event with the
same name in the queue waiting to be processed. Until that event is serviced, no additional events will be
queued for that variable, or any variable generating the same event name.

Notes View
The Notes view displays notes attached to model objects within the current project.

Notes contain text to help organize a project or keep track of useful information specific to a particular
model object. Notes also have a type associated with them which can be selected using the combo box in
the editing area. To create a custom type, simply type in the combo box instead of using the drop down.
When a note with a custom type is added, that type will be added to the combo box so that it can be quickly
selected from the drop down when making other notes.

Notes attached to the current project are displayed in the table. It can display in three modes:

1. In context - only displays the note associated with the select model object.

2. Sub hierarchy - displays the note associated with the selected model object and any notes associated
with model objects with are children on the selected object.

3. Full application - displays all the notes in the application.

You can search for notes by typing in the filter text box. Sort the contents of the table by clicking on the
header of one of the columns (e.g., clicking Model Element will sort the notes alphabetically by the name
of the model object the note is attached to).

42

Storyboard Designer Environment

Add notes to any model object through the right-click menu by selecting New > Note, or by selecting the
model object and clicking either the New… icon in the Notes view or by clicking in the text box where
it indicates Click to add a new note…. To delete a note, select it in the table and then click the red X, or
right-click it in the table and select delete.

To display the model object that a note is associated with, right-click a note in the table and select Go
To > Screen.

All the notes in the current project can be quickly summarized in a list by clicking Toggle Full View (the
yellow page icon).

Storyboard Designer Utilities
Storyboard Designer offers many features to help you efficiently develop your embedded user interface.
Some of these features improve performance by reducing potential runtime inefficiencies, while other
features speed the development of the application by providing greater insight into an existing design or
allowing multiple designers to work in parallel on the application's user interface.

Design Notes

The Design Notes export wizard is used to generate an HTML or PDF report of the Storyboard project.

Access the Design Note export from File > Export > Storyboard Design Report or right-click a Storyboard
GDE file and select Storyboard Export > Export Storyboard Design Report. This opens a dialog for you to
select the file system location for the design report and the format, HTML or PDF, that the design report
should be exported to.

43

Storyboard Designer Environment

The Design Notes report can be customized to contain a variety of information about the design model.
Some of the available content options include screen transition information, content thumbnails, resource
usage, and event and variable bindings.

It is also possible to generate headless Design Note exports from the Storyboard Design files that can be
used from a command line or scripting environment.

PATH_TO_INSTALL/Storyboard_Designer/storyboard/Storyboard -application
com.crank.gdt.designreport.core.designreportcore model=PATH_TO_GDE_MODEL format=[pdf|html]
output=PATH_TO_OUTPUT_FILE

The model is the full path to the Storyboard Designer model file and output parameter specifies the
file system path where the report and associated resources will be created. The format parameter can be
set to either html or pdf to indicate HTML or PDF outputs respectively.

GoTo Dialog

The GoTo dialog provides a quick way to locate and navigate to items in the application design. The GoTo
dialog is activated when the CTRL+1 (Windows/Linux) or COMMAND+1 (Mac) keys are pressed while
working in the main editor.

44

Storyboard Designer Environment

The Name and Value entries allow you to narrow the search criteria for the object you wish to find. The
text entered here filters the results in the list to only display search results matching what you have typed:

Name This selection limits the search to the primary name of the objects being searched. The name
field also searches the name properties of render extension and action properties.

Value This selection limits the search to the value field of actions or render extensions being searched.

Storyboard Search Dialog

Storyboard Search provides an extension of the Go To functionality. Rather than providing the ability to
see and navigate to a single selection, the results of a search are displayed in a tree format.

To search, invoke the Search dialog via the Search menu item or the CTRL+H key command.

Similar to the GoTo dialog, the Name and Value search criteria allow model object names to be searched
or in the case of actions and render extension arguments and variables also their values.

The search results are displayed hierarchically in the Search view:

45

Storyboard Designer Environment

Where applicable, double-click the results to select and bring forward the appropriate model element in
the main Storyboard editor.

Resize Storyboard Application

Use the Resize Storyboard Application dialog to create a new Storyboard Designer model file, with dif-
ferent screen width and height settings, based on an existing model file.

The application resize action dialog allows a Storyboard Designer model file to resize its screen dimen-
sions. Since all of the layers, controls, and render extensions in a model are placed at specific locations
within the model, the resize operation provides several parameters to allow the layers, controls, and render
extensions to be either re-positioned or re-scaled as appropriate.

The output of the resize action is a new model file located in the same file system location as the source
model file. Creating this new scaled model file next to the original model file allows the designer to validate
and inspect the scaled result before deciding to replace the original file.

Proportionally Scale Application and Contents

This is the 'one size fits all' resize operation which will be suitable for most resize operations.

46

Storyboard Designer Environment

Proportionally resize and reposition the application, screens, layers, groups, tables, controls and render
extensions. This resize mode is equivalent to a custom resize with the resize options enabled (Minus the
Use Layer Content Position Anchors)

Scale Application and Reposition Contents

This resize operation is useful for making your application larger without changing the size of the content.
This can be useful when extra space is required for adding additional buttons for testing purposes.

Anchor the application's layers to an edge. The app will be resized but layers and their content will not.
The position of the layers will be determined depending on which edge the layer was anchored to. Groups,
tables and controls will not change size or position relative to their parent layer.

47

Storyboard Designer Environment

Custom resizing options

Screen Resizing

Adjust Size: Scales the size of all the screens in the application.

Storyboard Variable Resizing

Adjust Location: Scales the location of all the user defined variables in the application that have been
bound to a render extension location or center of rotation points.

Adjust Size: Scales the size of all the user defined variables in the application that have been bound to
a render extension size.

Animation Resizing

Adjust Location: Scales the start and end values for grd_x, grd_y.

Adjust Size: Scales the start and end values for grd_width and grd_height.

Data Change Resizing

Adjust Location: Scales values for grd_x, grd_y.

48

Storyboard Designer Environment

Adjust Size: Scales values for grd_width and grd_height.

Layer Resizing

Adjust Location: Scales the location for all of the layer instances in the application.

Adjust Size: Scales the size of all the layers in the application.

Control Resizing

Adjust Location: Scales the location for all of the controls in the application.

Adjust Size: Scales the size of all the controls in the application.

Render Extension Resizing

Adjust Location: Scales the location for all of the render extensions in the application.

Adjust Size: Scales the size of all the render extension in the application.

Adjust Line Width: Changes the width of lines that appear in any render extension with the style set to
“Line”. The line width will be scaled by the value of the smallest scale factor, be it that of height or that
of width.

Image Render Extension Resizing

Enable Scaling: Enables the scale flag on all image render extensions.

Maintain Control to Render Extension Size Ratio: “Enable Scaling” by itself stretches images to fit the
entire control and may not have the desired effect. This option preserves the ratio from Control to Render
Extension so the images will not look disproportionate or out of place within the control.

Text Render Extension Resizing

Adjust Font Point Size: Scales the text font size by the value of the smallest scale factor, be it that of
height or that of width.

Others

Use Layer Content Position Anchors: Resizes the layers, but not the controls, groups, and render exten-
sions. This option overrides the options to resize those elements. The 'next' button of the Resize Wizard
will be enabled which transitions to anchor page, a selection for the anchor point for the controls/groups
within their respective layers.

Resizing GDE from the Command Line

It also possible to perform a headless resize of a Storyboard Application (*.gde) file from a command line
or scripting environment.

All of the Storyboard executables will be located in the PATH_TO_INSTALL/Storyboard_Design-
er/storyboard directories, though on each desktop platform they are named slightly differently

Windows:

"..../Crank Storyboard.exe" -application com.crank.gdt.ui.gderesize
 -output=<PathToResizedGDEFile>
 -w=800
 -h=480
 <PathToGDEFile>

49

Storyboard Designer Environment

Mac:

..../Storyboard.app/Contents/MacOS/Storyboard -application
 com.crank.gdt.ui.gderesize
 -output=<PathToResizedGDEFile>
 -w=800
 -h=480
 <PathToGDEFile>

Linux:

..../Storyboard -application com.crank.gdt.ui.gderesize
 -output=<PathToResizedGDEFile>
 -w=800
 -h=480
 <PathToGDEFile>

Note: Storyboard requires a display, so to run in a true headless environment a Virtual frame buffer needs
to be setup.

Xvfb :1 -ac -screen 0 1024x768x8 export DISPLAY=:1
 /Storyboard -application com.crank.gdt.ui.gderesize
 -output=<PathToResizedGDEFile>
 -w=800
 -h=480
 <PathToGDEFile>

Where output is the full path to the output Storyboard Designer model file. Where w and h are the new
width and height for the resized application.

By default the Storyboard Application will be resized using the "Proportionally Scale Application and
Contents" resize mode. In order to perform a "Proportionally Scale Application and Contents" resize or
"Custom resizing options" resize, The wizard option must be used.

..../Storyboard -application com.crank.gdt.ui.gderesize
 -wizard
 -output=<PathToResizedGDEFile>
 <PathToGDEFile>

Resource Clean Up Wizard

Run the Resource Clean Up wizard from within the Images view or by selecting the model file in the
Navigator view and selecting Resource Clean Up... from the menu.

50

Storyboard Designer Environment

The Resource Clean Up wizard is used to remove resources that are present in the workspace but are no
longer referenced by the project. In the wizard, the list on the left side contains the resources (fonts, images)
and is used to select the resources that should be maintained/kept in the project. All resources that are not
selected are permanently removed from the project and file system. The preview on the right side contains
a preview of the selected resource and the file system location of that resource.

This tool can only detect those resources that are directly referenced by the project. It is important that
resources that are referenced from external programs or scripts be manually checked so as to prevent their
removal from the project.

Once all of the resources to remove have been identified, selecting OK permanently removes those files
from the file system.

Consolidate Images Wizard

Launch the Consolidate Images Wizard from the toolbar in the Images view.

51

Storyboard Designer Environment

Launching the Consolidate Images wizard analyzes all of the images in the workspace. These images are
compared byte by byte to determine if their content is identical and can safely be consolidated together
into a single reference.

Once the analysis is complete, a dialog presents the results showing the duplicate images that have been
detected and provides a visual comparison of the source and reference images to ensure that they are
different.

By default, all duplicates are consolidated into a single reference. To remove a reference from being con-
solidated, deselect the item.

Selecting OK searches the model and consolidates variable and argument references to unify their refer-
ences.

After all of the references have been combined there are likely to be a number of images that are no longer
used. These can be immediately deleted from the workspace at this point.

Trim Images Wizard

The Trim Images Wizard can be launched from the toolbar in the Images view.

52

Storyboard Designer Environment

The Image Trim wizard analyzes all (no selection made) or just the selected images from the Image view.
It scans the image looking for transparent pixels on the borders of the image, in order to shrink the image
to it's smallest possible size.

The Wizard displays the selected images (or all images, if no selection) that have any pixels to be trimmed.
The image preview shows the candidate image, and provides information on how much of the image will
get trimmed. By default, the wizard makes copies of the original, untrimmed files and keeps them in the file
system. If you would like to delete the original untrimmed files, simply deselect the appropriate checkbox.

The wizard also refactors all controls containing this image, while maintaining the proper control size and
the position of the image within each control.

Split Images Wizard
Launch the Split Images Wizard from the toolbar in the Images view.

The Image Split wizard analyzes all (no selection made) or just the selected images from the Image view.
It scans the image once, looking for transparent pixels and calculates how the image should be split to get
rid of the maximum amount of transparent pixels.

The preview displays a red outline of how the image will be split, and will update according to how many
horizontal and vertical splits you specify. The percent of pixels eliminated is displayed in the top right
corner.

53

Storyboard Designer Environment

When you select OK, the image split operation proceeds on those images you have selected. After splitting
the images, all references in your app to the previous image are refactored such that the controls containing
those images are replaced with the new split images positioned appropriately.

To leave the controls as they are and not perform the refactoring, simply deselect the Refactor controls
check box at the bottom of the wizard.

Merge Control Images
Launch Merge Control Images from the Application Model view or by selecting Manage > Merge Control
Images from the right-click menu on the desired control.

This can be used when you have one or more controls with static image content that will not change during
runtime. It can be more efficient to flatten those render extensions into a single static image. The controls
must be in the same layer for the wizard to work correctly.

Storyboard Performance Log Viewer
Performance logging is a general record tracing and logging mechanism that is built into the Storyboard
engine. This functionality allows the capture of fine grained execution information about operations being
performed within the engine. This can be enabled by enabling performance logging in the Storyboard
Simulator Configurations under logger (.plog file).

Each performance record is made up of three pieces of identifying information along with the timestamp
of when the record was generated and in certain cases the duration of the operation represented by the

54

Storyboard Designer Environment

record. The three pieces of identifying information represent the payload of the performance records and
provide context to the overall record stream:

• A class identifies the classification of the record. An example of a class might be an event, an action
or a control.

• An operation identifies the record within the class in terms of context. For example events can be queued
or they can be dispatched, both are examples of operations within the event class. Similarly the control
class identifies the allocation, destruction and rendering operations that take place with controls.

• The value or name of the record is the final piece of data. This field has context based on the class and
operation of the record. The field may include information such as the name of the event in the case of
an event dispatch or queue operation or the name of the resource being loaded for a resource load record.

The class, operation and value fields can be represented hierarchically as not all operations apply to all
classes.

The new plotting functionality allows these records to be filtered, analyzed and visualized within the con-
text of a Storyboard application execution timeline.

A number of predefined record plots are included that represent common analysis scenarios and a custom
plotting mechanism gives you the ability to perform record filtering that is contextual to the problem you
may be trying to investigate with your own application.

asdasd

Predefined Record Plots

A number of predefined plots have already been defined that align with common filtering and analysis
that are both common and useful. For example displaying the screen rendering time, resource load times
or CPU usage information.

55

Storyboard Designer Environment

Not all of these plots may be applicable for the performance log that you are analyzing, for example CPU
and memory metrics are only available if the trace information contains those records. On some engine
platforms all metric information is not always available.

Each of the pre-configured plots contains a description of the metric that is being generated and plotted
and further description of how you might use these plots is described below.

Custom Record Plots

The custom metric plot dialog provides an advanced functionality to create custom filters and match criteria
for various records in the event log. A number of statistical operations are available to be applied to the
filtered records in order to generate plottable data.

56

Storyboard Designer Environment

A basic operation can involve counting the number of instances of a record, for example running anima-
tions, or determining the current, total or average time for a particular action such as Lua.

You can select a record match criteria that will cause records to be included in the statistical operation set
as well as a reset criteria that will cause the statistical operation to reset and start over. A common reset
operation would be to reset at every screen transition to gain insight on per-screen costs. Altogether this
provides a very powerful mechanism that you can create visual plots of data for different contexts.

Animation Plots

The performance log also contains records that describe the state of animations that are executed during
the course of the log capture. More specifically the variables used in those animations and the values that
are being changed over the course of the animations execution. A separate pre-configured animation plot
dialog shows these variables and allows their values to be plotted on the application timeline against other
plots.

57

Storyboard Designer Environment

Analyzing Applications Using Record Plots
Here are some quick analysis scenarios that you can take leverage with your performance logging plots.

Visual Accountability

How an application renders can be greatly influenced by a large number of external factors. On all systems
it is possible for the rendering time to be measured and plotted. This is included as the Redraw pre-con-
figured plot and is one of the default record plots that will be shown.

In general redraw time will correlate to the complexity and composition of the visual scene and the goal
is for it to remain below certain thresholds such as 60fps (~16ms/redraw), 30fps (~33ms/redraw) or 15fps
(~66ms/redraw).

58

Storyboard Designer Environment

If you observe spikes in the rendering time, it may be due to an external influence interrupting the operation
of the rendering engine or it may be due to an internal application factor such as a new resource being
loaded on demand or additional complexity of a scene by way of more content being rendered. Overlaying
on top of the redraw plot you can use the pre-defined plot for resource load count to identify when resources
are being loaded and if they correlate to a rendering delay or use the rendered control count pre-defined
plot to determine if the number of rendered elements on the screen have increased. With this information
you can take corrective action in your application such as pre-loading resources or merging control content
together at design time rather than engine render time.

CPU Accountability

Another first thing you might want to do is to take a look at the CPU profile of your application where it
is available. For this you need to ensure that you are logging with metrics enabled. The pre-defined CPU
usage plot will indicate what your average CPU usage over the application and how that usage correlates
to various screens of operation.

Similar to the redraw time, loading of resources can cause a spike in CPU usage, but so can the processing
of different kinds of events and as such the action processing time for those events may be something you
want to correlate. For this the pre-defined action duration plot will be helpful to allow you to understand
what actions or what stream of events are correlated to your CPU bursts and take corrective action if
required.

Memory Accountability

Similarly to CPU accountability, the memory usage information is captured when metrics are enabled (on
some platforms). This memory profile offers insight to dynamic behaviour of an application and the goal
with this plot is for an initial growth to be observed and then a relatively flat plot for repetitive parts of
the user interface as the application enters a steady state.

Memory is typically used by resources such as fonts and images and these are loaded on-demand. If you
see that your memory usage is continuously climbing then you might want to correlate that with some of
the rendering activity. It could be that you are experiencing a dynamic resource leak. Dynamic resources
include controls and groups that are cloned, tables that are resized and not virtualized as well as timers and
animations that are created from Lua. You can use the pre-configured resource count plot to see whether
or not these resources collectively are growing. If they are then further investigation may lead you to look
at what kind of resources are being created and to ensure that they are being properly cleaned up within
the application.

External Data Source Accountability

Storyboard is an event-driven system and as such interfaces with external applications using events. It
may be that the frequency of events arriving from outside sources may be affecting the operation of the
UI. This might manifest itself as longer render times as they're observed in the render time pre-configured
plot. In order to visualize the number of events that are being generated of any particular type you can use
the custom metric plot and specify the events that you are interested in and plot either count or duration
as a cumulative value on a per screen or application basis.

Toggling Event Lines

The Chart also has the ability to enable or disable vertical line markers that allows users to visualize the
event on each screen. As Storyboard is entirely event driven, it provides the essential ability for a user to
be able to determine which screen has a cluster of event activity and how it relates to some of the other
metrics discussed in the sections above.

59

Storyboard Designer Environment

Plot Selector

The plot selector tool allows a user to select which plots are to be shown or hidden in the plot area. Adding
plots from the animation, custom record, and predefined record plots will appear in this view. The plots
that are currently in that view can also be deleted.

60

Storyboard Designer Environment

Chart UI Elements and Usage

The Tool Bar

The left tool-bar consists of the tools discussed in the sections above (from left to right):

•

 The Plot Selector Tool

•

 The Preconfigured Analysis Plots Tool

•

 The New Animation Plot Tool

61

Storyboard Designer Environment

•

 The New Metric Plot Tool

•

 The Event Lines Toggle Tool

The right tool-bar consists of the tools that take actions on the appearance of the charts (from left to right):

•

 The Zoom-In Tool

•

 The Zoom-Out Tool

•

 The Reset-View Tool

The Right Click Menu Items

The user also has the ability to use some of the functions to “Zoom In”, “Zoom Out” and “Zoom to
Selection” abilities from the menu items below.

“Jump to this Event in the Log” provides the user the ability to jump to the specified event in the Log tab.
From here, a user has the ability to look at the grouped performance record involving that single event or
group of events in the case that there were multiple events for that particular time instance.

62

Storyboard Designer Environment

“Export Selection to CSV File” provides an export functionality to extract the records between a selection
range of the gathered trace. The user can select the selection range that they wish to investigate by clicking
and dragging horizontally across the plot area to start the selection. This is shown in the image below.
They can then right click and export the selection to their desired location.

63

Storyboard Designer Environment

64

Chapter 5. Creating A Storyboard
Project

You can create a new Storyboard project in various ways: as a new empty application, as a Photoshop™
import, as an import of a sample, or from an existing Storyboard Designer project or Storyboard Engine
*.gapp file.

New Empty Storyboard Project
In order to create an empty Storyboard project that contains only minimal application structure, select File
> New > Storyboard Application.

This opens the New Storyboard Application wizard and prompts for a name to use for the Storyboard
project. This name will also be used for the initial Storyboard application file.

Next, set the size of the screen display and its color depth characteristics. Once configured, these settings
remain configured for the life of the application.

65

Creating A Storyboard Project

Select Finish to close the wizard, create the new project, and automatically open the Storyboard editor
on the project:

New Project from a Photoshop PSD File
A common place to start with application development is the artwork and graphics, or the visual content.
Visual content for a Storyboard application is typically prepared in Photoshop™. The Photoshop™ import
feature provides the ability to use these design files to jumpstart application development.

To use the import feature, select File > Import.

66

Creating A Storyboard Project

Select Photoshop PSD File and click Next, then select the PSD file that you want to import from the local
filesystem.

Select whether to import in to an existing project or in to a new project. You can control how the PSD
import is executed by changing the PSD import options.

Once the Photoshop™ file is imported the application opens in the Storyboard editor. The layer information
from the Photoshop™ file is maintained, and the layers created as part of the model are automatically
included in the Application View as children of the screen(s) that they were associated with or as part of
the Unused Layers category for layers that were hidden during the initial import.

The screen with the name of the PSD file that is now a part of the application reflects the last visible state
of the file when it was saved and contains those layers that were visible during that editing session.

New Project from a Storyboard Sample
The Storyboard installation contains a number of samples that you can use as reference for different UI
development scenarios. These sample projects are generally not full-featured programs but are snippets
designed to demonstrate how to use features of Storyboard including render extensions, actions, anima-
tions, or other visual effects.

Use the following options to launch the Import Storyboard Sample dialog:

67

Creating A Storyboard Project

• Select Import Sample Project from the Application Model view

• Select File>New>Storyboard Sample

• Select File>Import and then Storyboard Development>Storyboard Sample

These options bring up a dialog allowing you to select one or more projects to import. The keyword filter
allows you to search for projects that contain functionality that you may be interested in by searching both
the project name as well as the project descriptions.

Once selected, a project will be created and the sample will automatically be opened into the Storyboard
Designer editor.

New Project from Storyboard Embedded En-
gine File

Storyboard Designer can also round-trip export/import the files created as part of the Storyboard Embedded
Engine, also known as gapp files since they typically have a .gapp file extension. These files are imported in
the same way as a Photoshop™ file, using the import wizard from File > Import > Storyboard Development
> Storyboard Embedded Engine (GAPP).

68

Creating A Storyboard Project

Select Next, and then select the embedded engine file to be used for import.

Existing Project Import
Occasionally it may be convenient to share an existing project from one workspace to another. If the project
is archived or its directory structure completely copied to a new location then it is possible to import the
Storyboard Designer project as an existing project.

Select File > Import to launch the wizard and select Existing Projects into Workspace.

69

Creating A Storyboard Project

This displays the Import Projects page of the dialog.

70

Creating A Storyboard Project

Search for existing projects contained in the filesystem by selecting the Select root directory option or
projects that are contained within an archive file by selecting the Select archive file option.

In either situation, the Projects panel will populate with the content that can be extracted from the location
selected. If projects exist in the workspace with the same name, then those projects will be shown but
disabled in the list. Select the projects you want to import to your workspace and press Finish to exit the
dialog and return to the workspace. Note that projects that are imported will not automatically be opened
in the Storyboard editor.

For projects that are being imported from the filesystem you also have the option to Copy projects into
workspace which, as the name indicates, will copy the project content into the workspace. Without making
this copy selection a new project will be created that links to or references the existing location of the
project in the filesystem.

Working with Multiple Application Design Files
In large projects it might be desirable to split the application design work, not only among multiple appli-
cation designers, but also among multiple design files in order to minimize the amount of conflict that
needs to be managed by a revision control system such as Subversion, Git, or Mercurial.

In order to facilitate working with multiple files, Storyboard maintains each design as a stand-alone free
runnable application, even when it may be later incorporated into a larger unified application. This sepa-
ration allows a more rapid development cycle as application developers are simulating and tuning content
in a more focused environment rather than having to consider all other system functionality.

To create a unified application, the Storyboard simulators and exporters have been modified to allow them
to accept multiple application files which they will merge together to produce a single unified output for
the Storyboard Engine.

Starting a multi-file application development is the same as starting a regular project since before you can
have two projects, you need to have one project. Typically the initial project created will be the master
application and will host the majority of the shared resource content. This is only a convention and not
a technical requirement.

Once another application is required, for example to represent a distinctly themed area of the unified
application, then you will want to create another Designer application model file within the base project.

Note

Currently, multi-file applications are all hosted in the same project so that they can ensure proper
sharing of image, font, and script resources.

You can create another application file in several ways:

Create a blank application using: File > New > Storyboard Application ... and select New Model in Existing
Project.

71

Creating A Storyboard Project

Import PSD content into a application: File > Import > PSD ... and select Into an Existing Project as a
new File.

You can also copy and paste an existing application and rename the *.gde file to bootstrap a new design.

Doing this will result in multiple application model (*.gde) files that are all contained within the same
project. They all reference the same image and script resources. Working with multiple project files offers
a great deal of flexibility but requires special development consideration. These issues are discussed in
more detail in Chapter 22, Multi-File Application Development.

Controlling Feature Enablement on Projects
Storyboard Designer provides a very rich set of functionality for application developers to use as they are
building their applications. However, it may be the case that the embedded target system constrains which

72

Creating A Storyboard Project

functionality should be used. In these situations, and in order to provide an appropriate level of guidance to
application developers about what they can and can't use, Storyboard Designer provides the ability to limit
what featues are available. This filtering happens only in the Designer user interface to filter the events,
actions and render extensions that are appropriate for the configuration selected.

The feature selection display shown can be accessed in the new project wizards when a project is created
from a PSD file or when an empty project is created. The feature selection can also be changed after the
fact in the Application Model view by selecting the view menu:

Features are grouped into two main categories, specialized features and platform configurations. The plat-
form configurations Storyboard Baseline, Storyboard Lite identify types of target platform configurations
as either fully featured or as resource constrained. The specialized features are generally selected in addi-
tion to one of the platform configurations to add in specialized functionality. The default feature configu-
ration for is to select All Storyboard Features.

73

Chapter 6. Adding Content to your
Application

Once your application project has been created the next step is to start adding new model elements, screens,
layers, and controls that reflect the display and organization of the user interface you want to build. You
can add much of this new model content through the Storyboard Designer editor or via the Application
Model View using the Add ... menu item. This will generally add the selected item as a child of whatever
the current selection is.

Storyboard provides a flexible model for you to organize your application, however there are some general
guidelines that you should follow. Applications should have screens that represent the different modalities
of the application. For example, a thermostat application may have a main screen, a separate screen for
managing settings, and another for a manual override behavior. Having all of the screens of the application
line up with the different operating modes that a user might encounter with the product means that a
new developer can immediately engage with a new project. When compared to a traditional code-based
approach this visual roadmap allows for faster iteration and development.

Similar to using multiple screens to provide immediate visual guidance on how an application operates,
layers can be used to consolidate common visual experiences. For example, an application may have
a common navigation or feedback interface that should be represented in all modes of operation. This
common visual presentation can be placed into one or more layers and those layers used on multiple screens
of the application. When a layer is shared in Storyboard, it is truly shared. The control content on the layer
is not replicated or copied, but is a single reference. For this reason it can be an efficient design approach
to segment content to multiple different layers that can be reused across multiple different screen contexts.

Using multiple screens and layers in a Storyboard application does not impose a significant memory or
CPU overhead cost. Similarly, due to resource references, all image and font resources in Storyboard are
pooled and centrally managed. Once an image (or font) is referenced you can use it in a different visual
context without incurring any additional memory overhead. This can be an important consideration for
deeply embedded applications that may want to offer a compelling user interface but have a limited amount
of storage Flash or dynamic RAM. With a judicious selection of common images, or by using techniques
such as nine-patch images, it is possible to have a rich and engaging experience with minimal resources.

Object Naming and Reserved Namespaces
As you create your application you will encounter a number of situations where you will need to determine
the name of an object. This might be the name of a screen, layer or control if you aren't importing from
Photoshop or this might be name of an event or event a Lua file or function. Being consistent with your
names will help your application stay organized and avoid conflict.

Storyboard establishes and reserves several namespaces to ensure that system events and actions do not
conflict with user defined functionality.

grd_ This prefix is reserved for all of the Storyboard internal variables. These are the variables that
are associated with specific properties of model objects and are generally manipulated from Lua
scripts.

gre. This prefix is reserved for all of the Storyboard standard events. You will see this prefix when
you are picking events to trigger your actions. When you create your own events, you should
avoid the gre. prefix.

74

Adding Content to your Application

gra. This prefix is reserved for all of the Storyboard defined actions. This action is the runtime identi-
fier and is something that you would encounter if you were creating your own actions using the
Storyboard SDK product.

In addition to the reserved namespaces, Storyboard Designer enforces a number of naming rules:

• Starts with a character a-z/A-Z not a digit or special character. Only _ (underscore) is supported as a
special character and there can be no spaces in names.

• Screens and layers must be uniquely named. Controls and groups can use the same names as long as
they have different parent containers. Two controls within the same layer can't have the same name.

• Variables can not have the same name as model objects in their parent container. For example you can't
declare a layer variable button and have a control on the same layer named button.

75

Chapter 7. Working with Events

Event Editor
The Event Editor is used to add and edit event definitions.

Opening the Event Editor

The different ways to open the Event Editor are:

• From the main toolbar, with a Storyboard Editor open, click the Open Event Editor button.

• In the Navigator View, double click a .evt file.

• In the Storyboard IO Connector View, in the Saved mode, right click an event > Edit Event.

Adding an Event Definition

The different ways to add a new event are:

• From the Event Editor, select the Add Event button or right-click the event list, select the New Event
menu item

76

Working with Events

• Right-click a model object and select Add > Action menu item to open the New Action dialog, then
select the Add Event button.

An event definition is made up of four parts, name, type, description and format.

77

Working with Events

• Name - Must not be blank and must only contain alphanumerical characters, periods and underscores.

• Type

• Incoming - Events coming into the user interface from external applications.

• Outgoing - Events from the user interface into external applications.

• Self - Events generated from the user interface to itself and are generally used to trigger additional
behavior in the UI.

• Description - This field is used to store information about the event definition. Different users and
teams will have their own style of event descriptions. A place to store information such as; conditions
for events firing, expected behavior or any other descriptive information.

• Format - For more information about event format strings, read the section on Serialized Data and the

Event Format String. To add elements to the format string, press the Add Event Data Element button
and open the New Storyboard IO Data Element Wizard.

78

Working with Events

• Name - Must not be blank, must only contain alphanumerical characters or underscores and cannot
begin with a number.

• Format - The size(8,4,2,1 bytes) and type(signed, unsigned, float) of data.

• Array Size - If this data element is an array, the Array Size will be greater than 1.

Data Element Types

These are the different data element types and their default Min/Max attributes.

Changing Element Array Length

It is possible to change the size of an element array during the creation of the data element or after the event
has been created by right-clicking on an event data element in the Event Editor > Change Array Length.

79

Working with Events

The Change Array Size Dialog will be opened. This is a simple dialog that accepts a number which will
be used as the array length for the selected data element. The array length must be greater than zero.

Reordering Event Data Elements
The event format can be changed by reording the data elements. This is done using drag and drop opera-
tions. There are rules that enforce the order of data elements from the largest data types down to the small-
est data types. Data elements that are of common size can be reordered amonst themseleves, regardless of

their type(i.e. 4u1, 4s1 and 4f1). To enable/disable the enforcement of sorting rules, toggle the button.

Editing Min and Max Attributes
Each event data element has min and max attributes associated with it. It is a good approach to define
these values when defining the event. These attribtues are not used by Storyboard Engine, they are only
used by Storyboard Designer Storyboard IO Connector. To edit these values, double-click in the cell to
activate the editor.

Using the Storyboard IO Connector
The Connector View will show (No Model Selected) if a Storyboard Application hasn't been opened.
In order for the Connector View to populate, a Storyboard application must first be opened. Once an
application has been opened, it will show the name of the current Storyboard Application in the top left
corner of the view.

The Storyboard IO channel name is autopopulated with the name of the selected Storyboard Application.
It can be overridden in the case where your application has specified a different SBIO channel name.

80

Working with Events

Your Storyboard application must be launched before sending an event from the Connector View or else
a warning will appear.

Live Mode

The Live Mode tab in the Connector View is used to send events on the specified SBIO channel. All of
the user events defined for the current application are listed in the dropdown Events menu. Selecting an
event from the list will populate the Event Format field and element editors.

81

Working with Events

The Live Update button is enabled by default, it determines if modifying any event data element values
should send a new event on the specified channel, this means dragging a slider will send a series of events
to your application. If the Live Update button is disabled, one can change values as much as necessary and

then the event can be fired by pressing the button.

The Save As... button is used to save the current event configuration for reuse in Saved Mode, this is
known as an Event Instance, these are the primary focus of the Saved Mode tab.

82

Working with Events

Saved Mode
The Saved Mode tab in the Connector View is used to send preset events, known as event instances. An
event instance is an event that has been pre-configured for reuse.

Here we have the event 'power' and two event instances 'Power On' and 'Power Off'. The Connector View
will default to using a boolean editor when an event element is defined with a min of 0 and a max of 1.

There are two ways to send an event from Saved Mode. The first method is to double click on an event
instance in the events tree, the second is to press the button that appears beside event instances in the
event tree.

The Save button is used to save the changes made to the currently selected event instance.

The Save As... button is used to save the current event configuration as a new event instance. Provide a
name for the new event instance in the Save As... dialog.

83

Working with Events

The Restore Defaults button is used to return the currently selected event instance back to it's saved state.

The Filter Events field is used to search for events and event instances by name.

Data Element Editors
There are diffent editors available for working with event data elements in the Connector View.

• Number Slider - Contains a slider and a number spinner. Not available on 8u/8s/4u element types.

• Number Spinner - A number spinner, can perform mathematical calculations on, increment and decre-
ment the current value. Not available on 8u/8s/4u element types.

• Number Field - A text field for inputing numbers. Only available on 8u/8s/4u element types.

• Color Picker - Open Color Dialog or input RGB color values. Only available on 4u type elements.

• Boolean Radio - True and False buttons.

• Boolean Toggle - A button with an up state (False) and a down state (True).

• Text Box - A text field for input of UTF-8 text. Only available on 1s type elements. 1s0 elements are
null-terminated while 1sN elements are limited to N bytes. This is the only editor available for 1s0
element types.

84

Working with Events

Storyboard IO Event C/C++ Header Export
When defining events, they are often meant to be injected from an external application. To facilitate this,
Storyboard has the ability to generate a C/C++ Header file that contains event names, format strings and
data structures for all events of type Incoming and Outgoing.

There are two ways to run an event header export.

• From the Navigator View, right-click on a GDE file > Storyboard Export > Storyboard IO Event Header
(C/C++)

• File > Export... > Storyboard Development > Storyboard IO Event Header (C/C++)

The following dialog is used to configure the parameters of the export with options to export names,
formats and data structures.

This chapter further discusses working with Storyboard IO

85

Chapter 8. Connecting Events to
Actions

Events trigger actions. Actions perform the work of the application by making adjustments to the user
interface or interacting with outside applications.

Every event has a name which is used as the matching trigger for actions. Events may also contain an
optional data payload and a symbolic description of that payload in what is referred to as a format string.
Events can be directed at a particular model element, contain position information to target a particular
screen region (such as a press event) or be completely independent of the display state of the user interface.

Events fall into three broad categories:

• Standard Input Events are generic input definitions and are pre-defined within Designer and as such are
not user defined events. These events represent expected user interactions such mouse or touchscreen
press, release and motion as well as keyboard input. There are other standard input events defined for
managing UI state changes such as focus management, screen change notification and application state
management.

These event definitions and their data payloads are defined in the header file iodefs.h and are also
listed in the appendix Appendix D, Standard Event Definitions.

• UI Events are events that are defined to be used just within the context of the user interface. UI events
are considered user events as they are custom to your application and you define them for your specific
application needs. In general these events are generated from within the application in order to trigger
some additional follow up behavior within the Storyboard application. Examples of this include the
events generated in response to timers or animations. User defined events that are sent within the appli-
cation are also considered as UI events, for example an application might define its own PowerOn or
PowerOff events that it sends when the user initiates a touchscreen interaction. In the Event Editor,
these types of events are labeled Self Events.

• External Events are also user events. These are events that you defined for the purpose of communicating
information into and out of the user interface. These events will frequently represent the application
programming interface between the user interface and the rest of the system. Due to the shared nature
of these events, between the UI and the system, these events deserve a special level of diligence in their
design as it requires a greater effort to change their meaning or data payloads once they are put to use.
In the Event Editor, these types of events are either labeled Incoming or Outgoing Events.

The delivery of an event in a Storyboard application is what will trigger the execution of actions which, as
we have mentioned, causes visual and behavioral changes in the application. Actions receive an association
with an event when they are bound to a particular model element in the application hierarchy. For example
the way in which a gre.press event triggers a Data Change action might look something like the
following:

86

Connecting Events to Actions

To add actions to your application model, right-click the application and select Add > Action menu to
open the New Action dialog.

This dialog presents a three panel dialog containing the three pieces of information that you require to
bind an action.

Trigger Event This panel allows you select one or more events that you want to trigger ac-
tions. By default the list is populated with the standard events, but you can
add your own user defined events as well at this point. Select the Add Event
button to open the New Event dialog. In this dialog you can enter in the name
of your new event and provide some optional descriptive information about
the source and payload of this event. Once a new event is created it will be
added to the list of available events shown the New Action dialog. All user
defined events are stored in the project relative file events/custom.evt.
This text file uses a simple formatting and can be edited directly if many user
events need to be added all at one time.

87

Connecting Events to Actions

Note

The name of an event is what is used to trigger actions, so event
names should be carefully considered. All of the standard Storyboard
event definitions are placed within a gre. prefixed namespace. As
you develop your application and introduce your own custom events,
you should take care to organize your events in a manner that allows
them to be clearly identified and associated with specific functional
domains within your overall product.

Action The second panel in this dialog allows you to select one or more actions that
you want to invoke when the triggering event is received. There are many
different types of actions that you can draw from.

Action Parameters This third panel's content will change based on the action selection and
presents a user interface for adjusting the parameters of the selected action. If
multiple actions are selected, then this panel will only show the parameters for
the first action selection made, but all of the selected actions will be bound.
The action arguments are presented for convenience in this dialog and can al-
ways be changed or reconfigured using the Properties View.

In order to complete the dialog at least one event and one action must be selected. The resulting actions
are going to be bound to the selected model object, or if multiple objects were selected then bindings will
be created for every one of the selections. You can verify that the action binding is being performed on
the intended object by looking at the Action & Event Model Context information at the bottom of the
New Action dialog.

After an action is bound to a model object, that action will show up in the Application View underneath
the model object it has been bound to and will also be visible in the Action View when the model object
is selected. The action's properties can be changed and re-configured by selecting the action in either of
these contexts and then using the Properties View. For information about specific action parameters and
properties, please refer to the Storyboard Action Definitions Appendix.

If you have mistakenly bound an action to the wrong model object or have it triggering on the wrong event,
it is also possible to change this binding information from the Action View by double clicking on the field
you want to change and making the required adjustment. Similarly you can also change the action that
is being invoked when an event is matched by double clicking and selecting a new action from the drop
down list. When the action is changed as many of the action parameters as possible will be transferred
to the new action from the old action, but you should take care to double check your parameter settings
when making this type of adjustment.

Event and Action Matching Rules
In general event processing proceeds starting with control actions and working upwards through the model
until the event is finally matched by application actions. Which control(s) start this process depends on
the type of event that is being processed.

• Pointer type events such as press, release and motion are directed at a specific location within the display.
For these events the controls that will be selected as the starting point for processing will be based on
an intersection of the event position and the control location. Multiple controls may intersect with the
event and as such the control list for processing will be ordered in the same visual front (first) to back
(last) order. Events that are not visible or not active are not included in this processing.

88

Connecting Events to Actions

The controls that are matched by pointer events also have the potential to become the newly focused
controls if they have enabled a focus index property (off by default). Focus controls are used for non-
targeted events that do not have a specific display location.

• Targeted events, which is what most user defined events will be, do not have specific screen display
information and do not use an intersection rule to pick the control for processing. Instead these events
will start matching at the currently focused control on the current screen if one exists. If no such control
exists, then there is no control starting point and the event processing will start at the current screen.

• Targeted events. These are events that have a specific model target provided within the event payload.
In these situations, the control list will be created based on what the target indicates. If the target is a
control then it will be used to start processing.

If there is a list of controls then the event processing will to proceed through the list with the events
being processed sequentially: control, control's group (if applicable), control's layer. If there is an event
to action match on a control (or group, or layer) and the properties on that model object indicate that the
processing should stop, then event processing immediately passes up to the screen or application level
with no further controls (or groups or layers) being processed. If through this control selection process,
there is no applicable list of controls, then the processing of the event will start at the currently displayed
screen and then move to the application.

The following diagram outlines the processing of an event that contains position information:

The following diagram illustrates the flow for an event which does not have positional information:

89

Connecting Events to Actions

90

Chapter 9. Using Variables to Create a
Dynamic UI

As outlined in the Storyboard Architecture chapter, Storyboard variables play an important role in making
the presentation of a UI dynamic. Render extensions and actions have sets of properties, such as color,
size, alignment, or name, that define their behavior or operation. By default, these properties contain fixed
values that do not change from the values they are given at design time. This would nominally make for
a static and fixed user interface and probably an unsatisfying user experiences. To give rendered content
and executed actions dynamic behavior that can be modified when the application runs, these properties
can be bound to variables.

Variables, like actions, are associated with a particular model element. The model element that they are
associated with typically is an indication of the intended scope of use for that variable. For example if a
variable is associated with a control, then it is likely only render extensions and actions local to that control
that are going to be using that variable. If a variable is associated with the application or with a screen,
then that implies a broader context of use for the variable. This is not a hard rule however since Storyboard
allows references to variables using a fully qualified name as discussed in the Storyboard Architecture
chapter.

The preferred way of creating a variable is to create it at the point where the variable is going to be used,
for example associated with particular render extension's property. Within the Design environment, you
will know if a property can be made dynamic and bound to a variable by the presence of a variable binding
<> indicator next to the property name in the Properties View. Pressing on this icon will automatically
open up the Variable Selection dialog prompting you to select an existing variable from the application
model. If the variable you want to associated is not listed and you want to create a new variable, then this

91

Using Variables to
Create a Dynamic UI

is easily accomplished from within this dialog by pressing on the New... button. This will then open the
New Variable dialog allowing you the ability to create a new variable directly in place. The variable will
be created and associated with the model element that you were looking at within the Variable Selection
dialog and automatically selected for you.

The alternative way to create variables is to create them directly on the model objects that they will be
associated with through the Variables View or the Application Model View using the Add > Variable
functionality which will open up the New Variable dialog. This method is more direct, but more prone to
error because you will be asked to provide a type association for the variable. When variables are selected,
and created, through a particular property the type information is passed along and used as a filter so that
the subsequent dialogs will only allow you to select or create variables that match the type of the property
you want to bind to.

You can identify that a variable has been bound to a render extension or action property by the change in
presentation of that property in the Properties View. Properties that have not been bounds will simply show
the name of the property and it's current value. Properties that have been bound to a variable will have
an additional annotation indicating the variable that has been associated in the form of ${...:vari-
able_name}. This annotation will show in green if the variable has been resolved in the Design envi-
ronment and will show in red if the variable can not be resolved.

To change the variable binding to a new or different variable, then just repeat the process of clicking on
the variable binding <> indicator to re-open the Variable Selection dialog. To remove a variable binding
on a property you can right click on the variable binding <> indicator and then select Unbind. This will
remove the binding but will not remove the variable definition. To remove the variable definition, delete
the variable from the Application View or from the Variables View

Once a variable is created and associated with a property, any change in that variables value will cause the
Storyboard Engine to automatically schedule a redraw operation of any elements that might be affected
by the change. Variables can be bound to multiple properties at the same time. In fact this is a common
Storyboard design pattern to create styles within the application for shared behavior that you want to
treat in a uniform manner. An example of such a use would be the definition of application variables for
font names and font sizes or a set of translation text values that should be used commonly throughout
the application. During design, the value of the variable can be changed either directly when adjusting a
property that has been bound to a variable by changing the value in the Properties View or by making a
change directly in the Variables View. When the value of a variable changes in the Design environment
the change will propagate through to all clients who are referencing that variable in a similar manner to
what happens when the value of a variable is changed at runtime.

Variables are generally manipulated directly in one of two ways; via a DataChange Action or as part of
a Lua callback function in a Lua Action. The DataChange Action's is a simple action that allows one or
more variables to have their value set to a new value. The new value can be fixed or it can also be the value
of another variable extracted at runtime. It is ideal for scenarios where there is no additional computation
or logic required, simply a new value has to be assigned to a variable. If more sophistication is required,
then the the section called “Storyboard Lua API” provides a comprehensive API for reading and writing
variables defined as part of the Storyboard model and offers a rich set of conditional logic and IO facilities
that can be used to guide the setting of variable values. The Animation Action provides a common third
way of manipulating variables and that mechanism is covered in detail in the Chapter 10, Creating and
Applying Animations chapter of this guide.

Table Variables
Tables variables are the same as any other Storyboard variable, but due to the potential number of such
variables, they receive special treatment to facilitate their use. A table variable is different from a normal

92

Using Variables to
Create a Dynamic UI

variable only by the fact that they follow a special naming convention of name.<row>.<col> so that
by using a single base name, many different rows and columns can be addressed.

Table variables are created using the same process that normal variables are created. Within the New
Variable dialog there is a special check box Create a table cell variable. When this box is selected you
will be able to provide information regarding the number of variables that you want to create and which
row and columns they will be created for. Once these variables are created, they will be displayed in the
Actions View as a tree item with the base name of the variable shown but then expandable to show the
individual row and column variable entries with their name.<row>.<col> naming convention.

Table variables show up in the Variable Selection dialog the same way as normal variables do, but only as
the basename and not as the individual row/column entries. This is done intentionally to reduce the clutter
of the variable selection dialog. When a table variable is bound to a property and it is bounds in the context
where the table cell information is available, then the label on the property it is associated should show
an annotation that starts with ${cell:...}. If this is not showing this special cell annotation but is
showing the normal variable, either the variable was not created as a cell variable and must be re-created
or the context of the selection operation did not include a table cell.

Once created, the values of the individual variables can be changed to reflect different representation for
different cells. Similar to standard variables, these changes can be made at Design time from either the
Properties View as changes to the value of a property or within the Variables View. If using the Properties
View to make a change, the variable that will be changed will be the variable whose row and column is
in the context of the selection.

Tables are generally filled with content dynamically at runtime, and resized accordingly. To this end the
role of the table, and table variables, is to provide enough of a visual representation of the design to
ensure that the representation is correct. For example if a table will only be displaying three visual rows
of information, but may be dynamically filled to contain 100 rows, then there is no requirement to create
a table variable with 100 entries. Create only as many table variables as you need to show the design and
leave the remaining variables to be created dynamically at runtime. Doing this will result in a smaller and
less cluttered design.

93

Using Variables to
Create a Dynamic UI

Triggering Events on Variable Changes
As discussed in the section called “Event Driven Interaction Model”, events can be generated from many
different sources. The Storyboard Engine supports the creation of user events (see Chapter 8, Connecting
Events to Actions) and these events can also be generated by the engine when the value of a variable
changes. A typical example of where this type of correlated behavior might be applied is to synchronize
a scrollbar style presentation with a section of a scrolling table or layer.

To bind an event to fire when a variable changes you add the event to the variable in the Variables View
by selecting the variable you want to bind, right clicking and selecting Bind Event. This will open the
standard event selection dialog and allow you to pick (or create) an event to fire when the variable changes.

Similar to screen redraw operations, a new event will not fire every time that a variable's value changes.
Instead the first change will cause the event to be queued and until that event is serviced, no subsequent
events will be generated. This behavior reflects the intended use of this event generation to allow an
efficient coupling of display synchronization to data changes. This functionality should be used with care
as overuse of this binding can result in a flood of events and excessive redraw operations.

When the event bound to a variable fires, it will be targeted at its parent model object. This means, for
example, if you have a variable associated with a control that the event will be delivered first to that control
and then fall down until it hits the active screen and application. This means that actions on objects that
are not visible and part of the active screen may fire.

94

Chapter 10. Creating and Applying
Animations
Animation Action

The Engine supports user defined animations using the animation action, gra.animate. This action
starts executing an animation immediately, monitors the animation, and applies the specified changes as
they have been defined by the user in Designer.

An animation is a named block of operations that will perform changes on Storyboard data values at a
pre-determined frame rate. The individual data changes that occur within an animation are referred to as
animation steps.

An animation step contains the following information:

key The key is a reference to the data object that is going to be changed over the course
of the animation. In general, keys are numeric items such as x or y position, width,
height or transparency (alpha) values. However, it is possible with 0 duration an-
imation steps to apply a change to any variable at a point in the animation. This
includes text or images.

offset This is the time in milliseconds from the time that the animation was started that
this particular change will start to occur.

duration This is the time in milliseconds over which the change will occur. This value may
be 0 for changes that are not numeric (i.e. text or image values) or if the animation
step is defined to occur at the start or end of the animation block.

rate For non-zero duration animation steps, this is the change curve that will be applied
to the numeric value from its start value to the end value. Example rates include
linear, ease in (easein), ease out (easeout), ease in out (easeinout) or bounce.

starting value This represents the starting value of the animation. The starting value can be either
a specific value or variable reference, or it can be specified as the current value of
the animation key at the time that the animation starts. Using the current value is
good for animations that need to work generically to achieve some end value.

end value This represents the end value of the animation. The end value can be either a spe-
cific value or variable reference or it can be specified as an offset from the starting
value rather than as an absolute value. Using an offset (or delta) in an animation
makes it easy to perform incremental animations on objects.

Animation steps are all synchronized within an animation block so that their data changes will occur in
a synchronized manner. While it is possible to specify arbitrary time offsets and durations, these values
will be mapped onto the nearest synchronized frame slot. The frame slots are dictated by the frame rate
of the animation block.

Animation instances can be labelled with a string id which is an identifier used to provide exclusive
execution. It is possible for many animations to run concurrently, however if two animations have the
same id value, then only the last one invoked will actually run. For example, if you have an animation to
shrink and grow a control, then you only want one of either the shrink or grow operations to occur at one
time. This can be achieved by having the shrink and grow animation actions share the same identifier.

95

Creating and Applying Animations

Animations may be stopped at any time by using the animation stop action, gra.animate.stop.

Timer Keyframe Animations
Animations can also be created in the more traditional method of setting a timer and operating on data on
every timer firing. By manipulating data in the timer callback, clients can cause any number of custom
behaviors to occur, as the data changes on variables will automatically be reflected through to the user
interface as would be done at any other time.

The timer callback allows non-traditional data change rates to be applied, as well as flip-book style ani-
mations where a sequence of images is pre-defined and changed on each timer iteration. This could be
achieved through a series of 0 duration animations as of Storyboard 3.0.

Screen Transition Animations
Animations are frequently used during screen transitions. A screen transition is a way to move from the
visible screen to a new screen which may or may not have common layers. By default, screen transitions
can be invoked by using one of the following actions:

gra.screen Transition to a new screen immediately

gra.screen.fade Fade the new screen into the current screen over time

gra.screen.path Slide the new screen in and the old screen out over time, from one of the fol-
lowing directions

• Left

• Right

• Top

• Bottom

gra.screen.scale Grow the new screen over the current screen

All transition actions, which are time-based, take similar arguments that control the duration of the transi-
tion, the rate at which the transitions will occur, the orientation of the transition, and the number of frames
that should be used. Using these arguments, the designer can control the user experience (e.g., duration
and effects) as well as the overhead incurred on the system (frequency of frame updates).

During a screen transition, four events will be generated to notify the system of the current state. These
events are:

gre.screenshow.pre This event is generated for the new screen being shown. The event will be
generated before the transition starts. This event gives the user a chance
to change data via the gra.datachange action or Lua before their transition
content is updated.

gre.screenhide.pre This event is generated for the previous screen being hidden. The event will
be generated before the transition starts.

gre.screenshow.post This event is generated for the new screen being shown. The event will be
generated after the transition has completed.

96

Creating and Applying Animations

gre.screenhide.post This event is generated for the previous screen being hidden. The event will
be generated after the transition has completed.

The following illustrates the sequence of events:

The transitions are written such that if graphics hardware layer support is are available, then these layers,
assuming they are available for use, will be leveraged to lower the processing overhead for the system
during the transition period. Experience has demonstrated that it is possible to achieve smooth transitions
at almost no CPU cost when the hardware capabilities can be properly leveraged.

97

Chapter 11. Simulating your
Application

After an application has been created, it is a good idea to run it through the simulator to validate the
runtime behavior before exporting the application to a Storyboard Embedded Engine deployment file.
 The simulator is a host-based instance of the Storyboard Embedded Engine and should exhibit the same
operational behavior as the target, though there may be differences in the level of performance obtained
because of the different CPU and graphic characteristics.

The simulation of a Storyboard application can be invoked from a number of different locations within
the Designer environment.

• From the main menu Run > Simulate Storyboard Project

• From the main toolbar using the Simulate Storyboard Project

• By right clicking on an application model file (gde) and selecting Storyboard Simulator

• By right clicking within the Storyboard editor and selecting Simulate...

• By using the key command ALT/CMD+L within the Storyboard editor

If no simulator launch configuration exists, then this will create a default configuration for you and launch
the simulator with your application.

If you need to change the simulator launch properties, or you would like to create a new configuration then
you will want to use the Storyboard Simulator Configurations option instead.

98

Simulating your Application

Within the Storyboard Simulator Configurations dialog you have the ability to create new simulation
launch configurations or change the properties and settings of an existing simulation launch configuration.

• Depending on your host platform, you may be able to select a different version of the Storyboard Engine
to execute by selecting from the Storyboard Engine SDK drop down. For example you may want to
select an OpenGL hardware accelerated renderer or a software renderer depending on which simulator
better matches your target environment.

• Common plugin options are exposed within this dialog for easy access. These options translate directly
to command line options described in Appendix C, Storyboard Engine and Plugin Options.

• The Extra Engine Options text entry allows you to pass options directly to the sbengine simulator. In
addition to the verbosity (-vvv) option you can pass any of the command line options described
in Chapter 25, Exporting and Running on your Embedded Target and Appendix C, Storyboard Engine
and Plugin Options.

The Storyboard Engine Command Line area shows the final assembled command line that will be passed
to the sbengine that has been selected as the simulator.

It is possible to have multiple different simulator launch configurations for a single project that perform
different types of execution. For example you may choose to create a second launch configuration that
enables the Lua debugger option or perhaps you have different launch configurations that allow you to
perform and event capture and then another for event playback. When you launch the Storyboard Simula-
tor, if there are multiple configurations available a dialog will prompt you to select the configuration that
you want to run, allowing quick selection between different pre-configured options

In the event of multiple application project files within a project the Select Storyboard Application Mod-
el(s) presentation will change allowing you to select one or more application files to launch. If you are
working with multiple Storyboard application models, then you should continue reading Chapter 22, Mul-
ti-File Application Development for more details around multi-file simulations and exports.

99

Chapter 12. Scripting with Lua
The Storyboard Lua API (Lua API) gives developers access to the Engine though a Lua scripting interface.
 This API is a library of functions which allow interaction with the Engine by manipulating data and
working with events and user interface components. Through the Storyboard Lua API developers can:

• Get and set data values from the model

• Inject application events

• Manipulate model objects such as controls/layers

The Storyboard Lua plugin is built on top of the standard 5.1 release of Lua available from www.lua.org
[http://www.lua.org/]. While the core Lua interpreter is unchanged from the standard release, two addi-
tional modules have been incorporated to facilitate development with Storyboard:

The bitwise manipulation module (bit32) from Lua 5.2 has been built-in to this Lua plugin. This module
provides a native implementation of several standard bit operations, including those required for text con-
version to/from UTF-8. The documentation for the bitwise functions available from this module can be
found in the Lua 5.2 Reference Manual [http://www.lua.org/manual/5.2/manual.html#6.7]
The Storyboard module (gre) is included that provides function extensions to manipulate and work with
the currently active Storyboard model. This module also incorporates the Storyboard IO communication
API that can be used to send events to external programs.
.

Lua Action Callback Function
When a Lua callback function is invoked by the Lua action it will be invoked with a single parameter as
in the following prototype:

script_function_name(table mapargs)

The argument mapargs, is a Lua table whose keys provide the context in which the action is being
invoked along with any action specific argument and parameters. This context includes the application,
screen and control the action was associated with, the currently focused control, any arguments provided
to the action as well as all of the event data that cause the action to fire.

The following keys are always available inside the context's table:

context_app The application context of the current action

context_screen The screen context of the current action (the current screen)

context_layer The layer context of the current action (the current layer)

context_group The group context of the current action (the current group)

context_control The control context of the current action (the current control)

context_row If the context_control is a table then this is the row index of the current cell

context_col If the context_control is a table then this is the column index of the current
cell

100

http://www.lua.org/
http://www.lua.org/
http://www.lua.org/manual/5.2/manual.html#6.7
http://www.lua.org/manual/5.2/manual.html#6.7

Scripting with Lua

active_context The fully qualified name of the model object that invoked the action. If that
object is the application, this will be the empty string.

context_event The name of the event the triggered the action

context_event_data A pointer to a Lua table containing any event data. The event data is different
for each event and is defined in the event definition.

A Lua type called 'context' has been defined inside Storyboard's custom Lua module 'gre' to represent the
mapargs object for the purpose of auto completion inside the editor. However since Lua is untyped by
default, a Doxygen comment describing the mapargs parameter must be added to a function in order to
get auto completion on it, as follows:

--- @param gre#context mapargs
function CBMyFunc(mapargs)
 -- I now have auto completion on mapargs
end

Functions created by Storyboard will automatically be prepended with this comment.

Example of using context data:

--- @param gre#context mapargs
function CBGetContext(mapargs)
 print("Triggered by event : " .. mapargs.context_event)
 print("Event was targeting : " .. mapargs.active_context)
end

Passing Extra Parameters to Functions
Lua actions are identified using an action type of Lua and setting the specific Lua function and extra
parameters (if required) in the action arguments. Any extra parameters will be transferred directly to the
Lua function through first argument (a Lua table) and the data can be accessed by using the parameter
name as the table index.

--- @param gre#context mapargs
function CBUserParameter(mapargs)
 local p = mapargs.paramter1
 print("my_lua_func was passed : ".. tostring(p))
end

Lua Execution Environment
The Storyboard Engine Lua plugin provides a slightly different execution environment when compared
to normal Lua script execution.

Normally a single Lua script serves as the starting point of script execution and all other scripts would be
included using the Lua require() declaration. The Storyboard Lua plugin provides a slightly different

101

Scripting with Lua

loading behavior in that it will pre-load all of the Lua scripts contained in the scripts directory at engine
initialization time. The load ordering can be controlled by using the require statement to explicitly
order dependencies. Since the require mechanism is used to perform the loading, any project files that
use the same names as built-in Lua modules (i.e. table.lua, string.lua or io.lua) will generate a load time
warning indicating the potential load time resource collision.

A side effect of this early module loading and execution is that any Lua script that is located outside of
function blocks will have the opportunity to run before the application is fully initialized. This can be used
to seed early execution environments or load preferences before the UI is in place and ready to render.
Alternatively, this early initialization is possible by binding a callback to the gre.init event.

In addition to loading all of the script files in the scripts directory, the Lua plugin modifies the pack-
age.path variable and ;; default search path to automatically search the scripts directory.

A convenience variable, gre.SCRIPT_ROOT is pushed into the execution environment that contains
the path from the current working directory to the scripts directory. This variable can be used to locate
additional resource files or to include extra script directories in a manner that is relative to the overall
deployment bundle. Each seperate path is delineated by a single ';'.

print("Script base directory: " .. tostring(gre.SCRIPT_ROOT))
-- Look for additional module files in the scripts/modules directory.
-- This will search the added directory first
package.path = gre.SCRIPT_ROOT .. "/modules/?.lua;" .. package.path

Asynchronous Lua Support
The asynchronous Lua support is provided in two fashions:

Lua Action: To create an independent Lua thread in response to an action, the user can add an 'async'
parameter to any existing Lua script and it will automatically create and run that action outside of the
main UI thread.

Lua Script There is a new Lua API call gre.thread_create() that takes a single parameter which is a function
to execute. This function will be executed and scheduled to run in an independent thread of execution.

Threads are created using the system's underlying native operating system thread support. Operations
are synchronized explicitly through locks in the Lua VM, however there is no explicit support for data
synchronization (i.e. mutexes, condition variables)

The suggested communication pattern for inter-thread communication is to use Storyboard IO to inject
event data into the system. This is similar to the idea behind LuaLanes or WebWorkers where inter-task
communication is based on message passing.

Threads will be hard-terminated at exit. Clients should establish their own protocol where a soft shutdown
is required to trigger any asynchronous threads to terminate.

Lua Debugger
The Storyboard Lua Debugger enables the developer to monitor the flow of execution of the Lua scripts
used by the Storyboard application. Using the debugger it is possible to step line by line through a Lua
script while examining the variable values that are being used by the Lua functions.

102

Scripting with Lua

Note

The Lua debugger is configured such that it can only be used with the simulator runtimes on the
host platforms that support Storyboard Designer. For assistance in configuring the debugger for
embedded targets, contact Crank Software support (support@cranksoftware.com).

The Designer debugging environment communicates with the application's Lua script plugin using net-
work sockets in a client/server model. The Storyboard application acts as the client and is controlled by
the Designer debug environment which acts as the server.

Creating and launching the debug server is an automated process. To configure Lua debugging it suffices
to take the following steps:

1. Create a Storyboard application launch configuration. This topic is discussed in more detail in the
chapter Chapter 11, Simulating your Application.

2. Enable debugging in the Storyboard Lua plugin

3. Launch the Storyboard application

The first two steps are part of a one-time configuration required to set-up the simulator launch configu-
ration. After the initial set-up, only the last step needs to be performed in order to launch an application
with the Lua debugger running.

When enabling the Lua debugger you may find it convenient to create a second launch configuration for
the same project with debug enabled. This will allow you to quickly switch from a development/debug
simulation to a standard simulation. To enable the Lua debugger simply check the Enable Lua Debugger
option associated with the Lua plugin options.

Once the Lua debugger is enabled, run the Storyboard application the same as you would a normal sim-
ulation.

This will launch the Storyboard application and at the same time initialize the debug client within the
Storyboard application and the server running within the Designer environment. The two will connect
automatically over a network socket and your application should immediately begin running. To confirm

103

Scripting with Lua

that the connection has taken place and the Lua debugger is running, check the output console for the
following:

If you change to the Debugger perspective, the Debug view should look like this:

You are now able to start debugging your Lua code

The Lua debugger, when a breakpoint is activated will automatically switch to the Debug Perspective. This
perspective provides an alternative layout of views that are specifically related to debugging activities.

Variables Variables are displayed in a hierarchical manner in the Variables
view. Global variables are displayed in a special table and listed
as globals while function parameters and local variables are dis-
played as top level elements. Strings and numeric values are dis-
played directly, while tables can be navigated by double clicking
their nodes and driving down.

Breakpoints Breakpoints can be placed directly in the editor for Lua script files.
Breakpoints can be toggled on/off by double clicking in the margins
of the Lua script file where the execution should be stopped. While
it is possible to place breakpoints on all lines of a Lua script file, not
all lines are breakable due to the manner in which the Lua script is

104

Scripting with Lua

executed. Declaration breakpoints may not resolve to an execution
stop point in the script.

Breakpoints can also be enabled and disabled and removed by se-
lecting them from the listing in the Breakpoints view and perform-
ing the appropriate operation. It is also possible to navigate to di-
rectly to the script source file from withing the Breakpoints view
by right clicking and selecting Go To File.

Stepping, Continuing and Termi-
nating

The Debug view provides a list of active debug sessions and the ex-
ecution stack trace when a session is at a breakpoint. Once a break-
point is hit, then it is possible to single step to the next line of code,
to continue the execution until the next breakpoint is encountered
or to terminate the application using the view's toolbar commands.

Lua Executables
Storyboard includes a few stand-alone Lua executables packaged for the convenience of customers who
are working with Storyboard in environments where it is possible to use shell programs to interact with
the environment, most notably Windows, Linux, Mac and QNX environments.

sblua This is the standard Lua command line interpreter lua that has been linked against the Story-
board Lua shared library libsblua.so. All enhanced Storyboard functionality that is not
associated with an Storyboard application can be accessed using this interpreter. This can be
specifically useful for creating test and simulation scripts that generate Storyboard IO calls
using the gre.send_event API.

sbluac This is the standard Lua command line compiler luac that has been linked against the shared
library libsblua.so. This utility can be used to pre-compile Lua script source files into
platform independent byte code for faster load times. This utility is invoked automatically
during a Storyboard Export if the Generate precompiled Lua selection is made in the export
configuration.

105

Scripting with Lua

The bytecode is platform independent and can be used the in the same way as non-bytecode
Lua files by the Storyboard Engine at runtime. Note that currently, our Storyboard engine only
looks for .lua extensions, so if you would like to use bytecode files, make sure to give them
a .lua extension. Please be careful not to overwrite your Lua script files, because they cannot
be retrieved from the bytecode files.

To see the usage parameters just type 'sbluac' on the command line with no other arguments.

usage: sbluac [options] [filenames].
Available options are:
 - process stdin
 -l list
 -o name output to file 'name' (default is "luac.out")
 -p parse only
 -s strip debug information
 -v show version information
 -- stop handling options

A basic compilation to produce a bytecode file with the name luac.out, containing debugging
information, would look like this:

sbluac input.lua

To name the output bytecode file something other than luac.out, use this:

sbluac -o output.luac input.lua

To strip out debugging information, use this:

sbluac -s -o output.luac input.lua

106

Chapter 13. Working with C Callbacks
What are C Callbacks?

On resource contrained systems, you can reduce your memory footprint by using C instead of Lua. Typi-
cally, the systems that require this type of configuration are running with a virtual filesystem (VFS) and
are required to use the Storyboard Embedded Resource Header (C/C++) functionality of Storyboard. A
gra.ccallback action is used in place of gra.lua action. In order to support faster development
cycles, it is possible to use the C callback plugin in dynamic environments as well. The C callback plugin
needs to be pointed to the (dll/so) with the option -occallback,path=[path to lib]. In the non VFS case, if the
C callback action cannot find the requested function, it will fallback to Lua, to try and find a function with
a matching name, this is to allow developers to use Lua to implement functionality quickly, then migrate
the functionality into C once the desired behavior has been achieved.

C Callbacks on Windows
On Windows the C callback dll must be compiled with the /MD option to ensure that memory can be safely
passed from Storyboard Engine to your dll and back. Use __declspec(dllexport) to ensure that
sb_ccallbacks can be accessed from the dll. Usually a macro is used for this in order to support building
for other targets, as seen in the example below.

Example C Callback
Here's an example of how we could take the ClusterIO sample application and replace the Lua function-
ality with C. The action that is triggered by the cluster_update event should be changed from a gra.lua
to a gra.ccallback action, it should call the same function as before, CBUpdateEvent. This library
has a dependency on libgre.

ClusterIO_ccallbacks.h

#include <stddef.h>
#include <gre/gre.h>

void cbClusterUpdate(gr_action_context_t *action_context);

DLLExport const sb_ccallback_t sb_ccallbacks[] = {
 { "CBUpdateEvent", &cbClusterUpdate },
 { NULL, NULL },
};

ClusterIO_ccallbacks.c

#include <stdio.h>
#include <string.h>
#include "ClusterIO_ccallbacks.h"

#include <ClusterIO_events.h>

#if defined(GRE_FEATURE_VFS_RESOURCES)

107

Working with C Callbacks

#include <gre/sdk/sbresource_vfs.h>
#endif

void
cbClusterUpdate(gr_action_context_t *action_context) {
 gr_application_t *app;
 cluster_update_event_t *cluster_data;
 gr_data_union_t data;
 void *event_data;
 int nbytes;

 app = gr_context_get_application(action_context);
 if(app == NULL) {
 return;
 }

 event_data = gr_context_get_event_data(action_context, &nbytes);
 if (nbytes != sizeof(cluster_update_event_t)) {
 return;
 }

 cluster_data = (cluster_update_event_t *)event_data;

 memset(&data, 0, sizeof(data));
 data.i16 = cluster_data->speed;
 gr_application_set_data(
 app,
 "speedometer_content.speed.text",
 GR_DATA_FORMAT_2s1,
 &data
);

 data.f32 = ((float)cluster_data->speed * (214.0f / 200.0f)) - 107;
 gr_application_set_data(
 app,
 "speedometer.pointer_speedometer.rot",
 GR_DATA_FORMAT_4f1,
 &data);

 data.f32 = ((float)cluster_data->rpm / 10000) * 49;
 gr_application_set_data(
 app,
 "tach_exterior.pointer_tach_exterior.rot",
 GR_DATA_FORMAT_4f1,
 &data);
}

C Callback Export Labels
You can specify labels to be exported to your C callback header file as defines. In the properties view,
under Advanced, you will find the section called C Callback Export, where the label can be specified. This
field exists for Screens, Layer Instances, Groups, Tables and Controls.

108

Working with C Callbacks

In the above example, the following would be exported into the .h file.

#define CUP_LARGE "size_layer.cup_lg_control"

Exporting C Callbacks
Storyboard will export stubs for C Callbacks in the form of a source file(.c) and header file(.h). There are
a couple different ways to generate these files. Through the C Callback Export Wizard, through the Model
Resource Header Export and from a command line application.

C Callback Export Wizard

The C Callback Export Wizard can be opened by right-clicking a .gde file in the Navigator View, Story-
board Export > Storyboard C Callback Action Code Export (C/C++).

109

Working with C Callbacks

The C Callback export wizard allows you to select the .gde file, and choose the output path for the c/c
++ and header files.

The exported .h file will contain all the C callback export labels given to model objects in your project
as defines. The exported .c file will contain function stubs for all the C callback functions used in your
application. Keep in mind that this export will overwrite anything you may already have in your file, so
you should not point the exporter to your working copy.

C Callback Command Line Export
All of the Storyboard executables will be located in the PATH_TO_INSTALL/Storyboard_Design-
er/storyboard directories, though on each desktop platform they are named slightly differently

110

Working with C Callbacks

Windows:

..../Storyboard.exe -application com.crank.gdt.ui.ccallback.application.ccallbackexport
 model=<PathToGDEFile> c=<PathToCFile> h=<PathToHFile>

Mac:

..../Storyboard.app/Contents/MacOS/Storyboard -application
 com.crank.gdt.ui.ccallback.application.ccallbackexport
 model=<PathToGDEFile> c=<PathToCFile> h=<PathToHFile>

Linux:

..../Storyboard -application com.crank.gdt.ui.ccallback.application.ccallbackexport
 model=<PathToGDEFile> c=<PathToCFile> h=<PathToHFile>

Note: Storyboard requires a display, so to run in a true headless environment a Virtual frame buffer needs
to be setup.

Xvfb :1 -ac -screen 0 1024x768x8 export DISPLAY=:1
 /storyboard -application com.crank.gdt.ui.ccallback.application.ccallbackexport
 model=<PathToGDEFile> c=<PathToCFile> h=<PathToHFile>

Where the model is the path to the Storyboard Designer model file. This model file will be used to search
for a export configuration. The configuration parameter specifies the configuration name. If this is
provided then only the configuration with that name will be used in the export.

111

Chapter 14. Working with Design
States

What are Design States?
Design States are a visual representation of screen which is in a different state, because data has changed.
A Design State may represent a screen after running an animation or a set of data changes. Design States
allow users to communicate how a screen might change during the normal execution of your application.

In the screenshot below, we have the default Screen on the left and the Design State on the right. This
Design State represents what the screen will look like if the user selects the fan toggle button.

Design States enable the user to work with content that may not be visible by default. In the example
below, the Design State 5DayState has a single argument which is the show_5_day animation, this is a
representation of how the screen will look when a user presses the "5 DAY FORECAST" button.

Model elements cannot be added/removed from Design States, these operations are always global. Remov-
ing a control, will remove the control from the application. Design States are limited to making changes
that can also be made at runtime, this means setting internal model object attributes (x, y, width, height,
hidden) and changing Storyboard variables.

Creating a Design State
There are several ways to create new Design States.

• Add > New > Design State

112

Working with Design States

• Keyboard shortcut CTRL+N+D (Windows/Linux), COMMAND+N+D (Mac)

• When we right-click on an existing Design State and choose Add > New > Design State, you will be
given the option to create a Design State from the current Design State, this is effectively going to copy
the current Design State.

Editing a Design State
Master/State Context

Once a Design State is added to the application, a new button will appear at the bottom of the Storyboard
Editor. This is the Master/State context selector. This button is responsible for determining what informa-
tion is shown in the Properties View and Variables View, as well as how changes will be applied to the
model.

This button also shows up in the Storyboard workbench toolbar.

Master Context and State Context can be thought of as Global and Local contexts.

• When in Master Context, changes made in the Storyboard Editor, Properties View or Variables View
will affect the global state, the regular Screen and all Design States that do not specifically override a
value will inherit the change.

• When in State Context, changes made in the Storyboard Editor, Properties View or Variables View
will affect only the currently selected Design State. The exception to this is changes made to elements

113

Working with Design States

on the regular Screen will still be propagated to all Design States that do not specifically override the
value, since changes to the regular Screen will always be global.

Storyboard Editor
Changes made to model objects in a Design State will automatically add the changes to the Design State.
Changes to internal model object attributes such as x, y, width, height and hidden can be made directly
through drag and drop operations as is typical when working with the Storyboard editor. The primary
difference with the introduction of Design States is depening on your current Context Mode the changes
will either be applied globally or locally.

Keep in mind that additions and deletions are always global operations.

Properties View
When in State Context the title at the top of the Properties View will be green and marked with a Design
State icon. All properties that are changed in a Design State will be highlighted green and styled in bold
text.

When in State Context, changing a property that does not have a variable bound to it will open the fol-
lowing dialog:

The purpose for this dialog is that Design States can only change properties that can be changed at runtime,
in the case of render extensions, only properties with variables bound may be changed at runtime.

• If the change is intended to be a global change, then the user will select Switch to Master Context.

• If the user actually wants to remain in State Context and change the specific Design State, then creating
a new variable will allow changes to be made specifically to the selected model object in the context
of the current Design State.

Variables View
When in State Context, variables that are changed in a Design State will be styled in bold in the Variables
View.

114

Working with Design States

Manually Editing Design States
When we select a Design State from the Application View or from the Storyboard editor, the Properties
View will be populated with the Design State and it's arguments.

Animation Arguments

A Design State can be made up of several arguments, any number of which may be animation arguments.
Just like animations at runtime, Design State animation arguments can specify a context in which to run. To

specify a context, choose the button of an animation argument and select Choose Animation Context,
animation keys which are context specific (i.e. ${control:.. or ${layer:..) will be resolved with the specified
context.

Variable Change Argument

Variable changes are simple key-value assignments. The most appropriate editor for the specified variable
will be shown in the properties view such as an RGB editor for color variables or an image selector for
image variables. At this time, context based keys are not supported so all keys must be fully qualified
paths to variables.

Removing Changes From Design States
There are several ways to remove a change from a Design State.

•
With a Design State selected, in the Properties View, click the menu button beside one of the Design
State arguments and select Remove Animation or Remove Variable Change.

• From the Properties View in State Context, right-click on a Design State icon on a Design State property
(bold label, highlighted in green) and select Remove From Design State.

• For internal variables:

115

Working with Design States

• For user variables:

• From the Variables View in State Context, right-click on a Design State variable (bold label) and select
Remove From Design State.

When removing a variable from a Design State, the following dialog will appear, listing all the arguments
that will be removed from the Design State.

Hiding/Showing Design States

All Design States
When not actively working with Design States, they can all be hidden instantly. Toggling Hide All Design
States will override the visibility of Design States so that none are visible. Toggling Show All Design
States will restore them to their previous visibility, those Design States that were individually hidden will
remain hidden.

• CTRL+D (Windows/Linux), COMMAND+D (Mac)

• View > Hide/Show All Design States

• In the Storyboard editor , right-click and select View > Hide/Show All Design States

Individual States
Individual Design States can be hidden/shown in the Application Model View. You may want to hide all
the Design States that are not related to the current task you are working on. Visible Design States will
have an effect on the performance of the GDE Editor. By hiding Design States, the Storyboard editor has
less drawing to do, so it will be inherently quicker.

116

Working with Design States

Converting a Design State
Design States can be converted into either an animation or into a named data change. To convert a Design
State, right click on a Design State in the Application Model View, under Convert To... there are three
options:

1. Animation an animation will be created with all steps having a duration of 500 ms for numeric data or
0ms in the case of strings or booleans.

2. Data Change a named data change will be created. Animations are 'flattened' such that only the final
values will be included in the data change.

3. Design State when converting a Design State into a Design State, all animations arguments will be
'flattened' and included in the new Design State as a series of variable change arguments.

Animation Preview with Design States
One useful feature of Design States is the ability to create a custom starting point for the Animation Preview
tool. Some animations have a forward and a reverse animation. With Design States, the Animation Preview
tool can be instructed to begin the preview from a particular Design State as the starting point. In order to
specify which context to use for the Animation Preview, there is a Design Context field, shown below.

Opening the Design Context dropdown and selecting More Model Elements will open the following dialog,
which is used to select the specific context in which to run the animation. The selected model object may
be in a Design State, or may be the Design State itself.

The current animation is hide_mon_to_fri which is the reversed animation of show_5_day. In this sample,
we have a Design State that represents the show_5_day animation, 5DayState, by selecting it as the starting
point for the Animation Preview, we can preview hide_mon_to_fri starting from the end of the show_5_day
animation.

117

Working with Design States

118

Chapter 15. Working with Images
Custom imagery enhances the presentation of a rich user interface. A significant portion of a Storyboard
application's user interface objects are made up of custom visual elements. The Designer environment
works hard to ensure that the management and use of those images is as flexible as possible.

Images are applied to a UI design using the image render extension. The image render extension uses
its name property to identify an image file (png, jpg, bmp among others) that is to be rendered when the
control is redrawn. The name of this image file is generally relative to the project root and by convention
is located in the images directory of the project. Like all properties, the name field can be bound to a
variable in order to make it dynamic and changeable at runtime. The Storyboard Samples > Animation >
ImageRotation and Thermostat (among many others) demonstrate how images and image properties can
be manipulated to provide different visual effects.

Any image content that is directly in the images directory of a project will be loaded into image selection
dialogs and made readily available to the user. Since the images directory is part of the filesystem, it is
relatively straightforward to add content into it, however Storyboard also provides some import facilities
directly within the Designer environment:

• Directly placing images into your project's images directory. This can be done using copy and paste,
drag and drop directly to the underlying filesystem folder or into the folder within the Designer envi-
ronment.

• An image may be dragged and dropped from your filesystem directly into the application editor. When
this happens the image will automatically be copied into the images directory and then a new control
and image render extension will be created where you dropped the image.

• The Images View has functionality to import images using a toolbar icon. Multiple images may be
imported at a time.

• The Image Selection Dialog. This is the dialog associated with the Name property of the image render
extension. By default this dialog will show you the currently available images, but if you need to bring
in a new image then there is an import button within the dialog.

The Image Selectiondialog is presented when creating a new image control or when we are selecting to
change the Name property of an image render extension. The primary difference between creating a new
image control and changing the name property on an existing image render extension is that only newly
created image controls will have the option to Resize the control to the image dimensions. This option
allows you to drag out an area for a control but then properly fit the control to match the size of an image.

Image Rotation

Rotate At Center
Storyboard image render extensions have an option to facilitate the rotation of an image at the center of
the image. For images that are not scaled, this option behaves exactly as one might expect it would and as
the rotation property is changed the image rotates accordingly.

When an image is scaled and there is need to rotate it the rotate at center provides an automatic scaling
facility that may not be what you are expecting. In these situations the selection of rotating at center or
selecting a custom rotation co-ordinate and making it the center of the image will provide different results.

In all situations, the option to rotate at center works best with the image render extension alignment con-
figured center-center as such:

119

Working with Images

The rotate at center option uses a specific transformation path that will scale the image to fit the original
size of the render extension after the rotation has taken place, this means that as it is rotated, it will be
scaled to fit into its original bounds.

Rotate At Custom Point
The option to use custom rotation points works well with scaled images. The image will be scaled to fit its
render extension bounds before being rotated and the image rotation will be performed without modifying
the size of the image on screen.

In order to see the visual representation of the custom rotation point in Storyboard Designer, a render
extension must have 'Rotate around center of control' disabled and must either have a non-zero rotation
angle or must have a variable bound to the rotation property of the render extension. Hovering the mouse
cursor over the crosshair will display the name of the render extension and the position of the rotation
center point. Changes made to the rotation center x and y in the Properties View will be reflected by the
crosshair in the editor.

Clicking on a control with a visible center rotation point crosshair will enter the control into direct edit
mode. Upon entering this mode, the center rotation point crosshair will change to indicate that it is in
direct edit mode and the mouse cursor will change to indicate that the point can be dragged. Direct edit
mode allows you to drag the center rotation point crosshair within the bounds of the control, the center

120

Working with Images

rotation x and y properties will be updated to reflect changes to the crosshair position. When multiple
image render extensions which are rotated at custom points exist on the same control, only the topmost
render extension's crosshair will become active in direct edit mode.

When images are rotated dynamically at runtime, there is rarely a one-to-one correspondence between the
original source pixels and the destination pixels so some level of interpolation, or mapping, is going to
occur. There are many different algorithms for this interpolation each of which trades visual image quality
for the cost of the computation to perform the interpolation. This trade off can be adjusted globally by
configuring the quality render manager option for sbengine, with Storyboard defaulting to a higher
visual quality mid-CPU cost option. On OpenGL based rendering platforms, another option that can have
an equally significant impact on the visual quality of rotated images is the multisample render manager
option which controls how the edges of image textures are blended with one another. Higher multisampling
means smoother edges and lower multisampling results in more jagged edges.

Alpha and Transparency in Images
Since much of a Storyboard UI is composed of images, the format and organization of those images can
have a dramatic impact on performance. One of the key performance issues related to image rendering and
composition is the use of full or partial transparency. Large areas of full transparency can result in may
CPU or GPU cycles consumed needlessly traversing pixel areas. Similarly images that are fully opaque
but in a format that indicates they may have some level of per pixel level transparency can be optimized
at Design into a different format. Image format optimization and consolidation is covered in more detail
in the optimization chapter of this manual.

Creating Scalable 9-Patch Bitmap Images
9-Patch is technique used to scale an image in such a way that the 4 corners remain unscaled. The four
edges are scaled in one axis and the middle is scaled in both axis. 9-Patch support has been added to

121

Working with Images

Storyboard Designer to make scaling images on embedded applications easier. Instead of having multiple
button images of various sizes, customers can now have one image that scales and maintains image quality.

9-Patch images can be designed and edited directly in the Storyboard Design environment. You can quickly
analyze and convert existing large or scaled image content to 9-Patch format to achieve immediate memory
and runtime performance improvements. In order to be converted to 9-Patch, the source image must have
full 32 bit color depth.

Multi-Frame Animated GIF Images
While Storyboard animations [#ww_animations]provide a very power mechanism to create custom inter-
actions, simple single image animations can be created using using the industry standard animated GIF
format. Simply reference the animated GIF file in the standard image render extension and when the image
is rendered for the first time it will start running the frames of the image. In the current implementation,
animations specified as an animated GIF will loop forever. To stop the animation, change the image ref-
erence to a non-multi-frame image or mark the control as hidden.

122

#ww_animations
#ww_animations

Chapter 16. Working with Text
Storyboard gives you the ability to create and control text content with the text render extension. This
render extension offers a single styled text display with options to control the text alignment, text overflow
behaviour along with line and inter-character spacing. The text will be rendered using the font and point
size selected in the property panel.

Storyboard uses standard TrueType (*.ttf) and OpenType (*.otf) font files and includes a number of com-
mercially redistributable fonts. As these distributed fonts are selected and used the font will be copied to
the fonts directory of the project. To use a custom TrueType or OpenType font in your application you
just have to copy the font file into the fonts directory of the project. Once the font is parsed and analyzed
it will show up for selection and use in the Font property selection.

By using the font files directly Storyboard offers developers total control over what resources are used
on the embedded system. For example a system that uses a specific font for only numeric elements can
be edited to remove all other glyphs. Similarly several different fonts can be merged together to provide
broader language support for a particular product. The editing of these font files can be done with standard
commercial editing tools such as FontForge or TypeTool among others.

To support internationalization and broad character support, Storyboard uses UTF-8 encoding universally
for all text rendering. As long as the selected font contains support for the Unicode code points described
by the encoding, Storyboard will be able to display the content. Support for advanced bi-directional text
layout is provided by third party Crank Software partners and is discussed in more detail in Text Shaping
and Layout..

There are times when you will want to make formatting choices on your text based on the content you
are displaying. Situations like this usually come up when dealing with internationalization and handling
languages that have more characters than can be displayed or require a simple layout re-ordering to be dis-
played right to left. In these cases Storyboard provides you with ways to gather metrics about the text being
displayed through the built in Appendix A, Storyboard Lua APIthe section called “gre.get_string_size”
With the functionality provided by the Lua API you can choose to do things like reduce the font size of your
text if the language you are displaying is more verbose. The Scrolling Text sample provides an example
of how to use this Lua text API to size and measure text and adapt it to a particular display environment.

Rich Text Styling and Markup
Along with standard text support, Storyboard also supports the use of rich text. The rich text render exten-
sion allows the user to use a subset of HTML/XML tags to define the text formatting.

Table 16.1. Supported Rich Text Tags

NAME DESCRIPTION TAG OPTIONS

Paragraph The <p> tag specifies a
paragraph.

<p> </p> style - Set of attributes
that define how to style
the text.

Span The tag is used
for styling text.

 style - Set of attributes
that define how to style
the text.

Bold The tag specifies
bold text.

 None

123

Working with Text

NAME DESCRIPTION TAG OPTIONS

Italic The <i> tag specifies ital-
ic text.

<i> </i> None

Underline The <u> tag specifies un-
derlined text.

<u> </u> None

Break The
 tag specifies a
line break.

 or </br> None

Non-Breaking Text The <nobr> tag specifies
text that can't break.

<nobr> </nobr> None

Font File This is used to specify a
font face for a font fam-
ily (local file only, true-
type fonts only).

<style> @font-face
{ font-family: ro-
boto-bold; src:
url('file:fonts/
roboto_bold.ttf') } </
style>

1. font-style - Defines
how the font should
be styled. The values
"oblique" and "italic"
are treated the same,
this specifies the font
as italic. Default is
"normal".

2. font-weight - Defines
the boldness of the
font. Only support
value is "bold", oth-
erwise it's treated as
"normal"

Ordered Lists The tag is used to
define an ordered list.

 style - Set of attributes
that define how to style
the list.

Unordered Lists The tag is used to
define an unordered list.

 style - Set of attributes
that define how to style
the list.

List Items The tag is used to
specify a list item.

 None

Table 16.2. Supported Style Attributes

NAME DESCRIPTION ATTRIBUTE NAME PARAMETERS

Text Color The color attribute speci-
fies the color of the text.

<p style="col-
or:red;">This is a
paragraph.</p> or <p
style="color:#F-
F0000;">This is a para-
graph.</p>

Color can be a color
name (ie. "red", "blue")
or a hex value (ie.
"#FF0000")

Background Color The background-color
attribute specifies the
color of the background
behind the text

<p style="back-
ground-color:red;">This
is a paragraph.</p>
or <p style="back-
ground-color:#F-

Color can be a color
name (ie. "red", "blue")
or a hex value (ie.
"#FF0000")

124

Working with Text

NAME DESCRIPTION ATTRIBUTE NAME PARAMETERS

F0000;">This is a para-
graph.</p>

Text Alignment The text-align attribute
specifies the alignment
of the text block.

<p style="text-
align:left">Left Aligned
</p>

1. left - Left justifies
text.

2. center - Center justi-
fies text.

3. right - Right justifies
text.

Vertical Alignment The vertical-align at-
tribute specifies the verti-
cal alignment of the text
with it's line.

<p style="verti-
cal-align:top;">Top
Aligned</p>

1. top - Aligns text at the
top of the line.

2. baseline - Aligns text
at the baseline.

3. bottom - Aligns text at
the bottom of the line.

Font Family The font-family attribute
specifies the font family
to use.

<p style="font-fami-
ly:roboto-bold;">This is
a paragraph.</p>

Name of the font family
to use.

Font Size The font-size attribute
specifies the size of the
font.

<p style="font-
size:24px;">This is a
paragraph.</p>

Text font size, point size
syntax only.

Left Padding The left-padding at-
tribute specifies the left
padding of the list.

<ol style="left-
padding:0">

Number of tabs to use for
list padding.

Example Rich Text

 <style>
 @font-face {
 font-family: roboto-bold;
 src: url('file:fonts/Roboto-Bold.ttf')
 }
 @font-face {
 font-family: light;
 src: url('file:fonts/Roboto-Light.ttf')
 }
 </style>
 <p style="text-align:left">Left Aligned </p>
 <p style="text-align:right"> Right Aligned </p>
 <p style="text-align:center"> Aligned Center </p>
 <p> <u> I am Bold </u>
I should be on my own line

 <i> I am italic </i> This long text should not be broken up. This
 long text should not be broken up.This long text should not be
 broken up.</p>
 <p>

 item 1

125

Working with Text

 item 2
 item 3

 item A
 item B
 item C

 </p>
 <p style="font-family:roboto-bold"> Roboto Bold </p>
 <p style="font-family:light"> Roboto Light </p>
 <p style="font-size: 50px"> 50px </p>
 <p style="text-align:right">right aligned
 combined with blue</p>
 <p style="text-align:center">mixed styles: <span style="font-family
 :roboto-bold;color:blue">blue and bold or <span style="color
 :green"><i>Green italic</i></p>

Translation and Internationalization
Storyboard makes it simple to translate and internationalize the text content of your application. Dynamic
text content is treated the same as any other dynamic content that is rendered to the display. Within the text
render extension, the translatable content should be associated with a variable. Any changes that occur to
that variable, will trigger a screen re-draw to occur if that variable is being used in the current display.

Changes in string content of variables is automatically reflected in the user interface to those locations.
This makes the translation activity significantly less labour intensive, as it is only required to identify text
strings that are statically declared (ie not bound to a variable) and convert them to be associated with a
variable. This variable to text string association forms the base of Storyboard's internationalization support.
In order to change the UI to reflect a new language one has only to update the text variables with the
appropriate UTF-8 encoded text strings.

There are many different ways to organize the association of language to text strings and then the associa-
tion of those text strings to user interface variables. Storyboard does not impose any particular method, but
generally speaking there are two main techniques that can be considered to accomplish these associations.

One method is to simply keep track of all of the text variables being referenced and for each variable have
the translated string stored. This means that if I had a control, for example named mybutton on a layer

126

Working with Text

named mylayer, with a text render extension whose text property was associated with a variable (ie my-
variable) that our language database would store the the fully qualified name, mylayer.mybutton.myvari-
able, along with the value of the string, perhaps "Hello". This technique is simple and works well for small
applications where there is not a lot of duplication of text content. The sample Translation demonstrates
this technique being used in conjunction with multiple independent comma separated value (CSV) files
containing the language database information. Early versions of Storyboard provided a minimal level of
automation to help manage these mappings.

A second technique provides a more scalable approach to translated applications and is recommended for
sophisticated translation and internationalization applications. Instead of having each UI instance of text
declare a local variable all translated text refers to a single translation namespace with unique text strings
identified by unique ids. This centralized approach allows unique text strings to be declared once and more
easily allows for contextualized translations to be differentiated from one another. The sample Transla-
tionUsingId demonstrates this technique and is supported within Storyboard Designer with automation
tools that more easily integrate into workflows supported by text translation professionals.

The TranslationUsingId and Translation samples can be imported into your Storyboard Designer work-
space via File > Import > Storyboard Sample.

In some circumstances, most notably with non-latin character sets, it may also be a requirement to dy-
namically change the fonts being used to map to an alternative font that provides the appropriate glyph
support for the characters being rendered. Additionally it may be that a change in translated text requires
additional properties to be adjusted, such as font point size or control dimensions, to accommodate the
new translation. These can be adjusted as a straightforward change in value of a Storyboard variable. This
is exactly the same technique that is used for translated text, the difference of course being that rather than
changing text string values, the changes are to the font name or point size or numeric property of a control.

Text Translation View

Storyboard Designer contains a view specifically designed to assist with the process of converting and
managing translated text using the common translation namespace technique mentioned above. To open
the Text Translation view select Window>Show View> Text Translation.

127

Working with Text

The Text Translation view shows the text and translation content for projects that have identified them-
selves as having a translation database. For information on getting started establishing a translation data-
base, refer to the section Translating a Storyboard Application [#howto_translate].

For example, looking at the Text Translation view when then TranslationUsingId project is selected will
show three areas of content.

The Text References tab of the Text Translation view shows all of the text references in text render ex-
tensions that have been detected in the project. This includes text references that are static (not bound to
variables), already associated with variables or associated with variables in the translation namespace. The
filters at the bottom of the tab can help reduce the content displayed. This tab is the primary area where
you would manage the associations of text in the application with translated values. Right clicking on any
of the text entry fields will show a menu of choices:

Translate... This will perform a lookup of the text string in
the translation database. If a value is found then it
will be used, otherwise a prompt to create a new
text translation entry will occur. This option is only
available for non-translated content.

Synchronize Selection This is used to synchronize the value of the current
selection with other language values using the same
key. This can only be performed on translated con-
tent.

Switch Translation ID This is used to switch an existing translation to an-
other translation and is used when there are multi-
ple translations with different contexts of use, or to
change the translation id to something different en-
tirely. This can only be performed on translated con-
tent.

Remove Translation This will remove a translation id mapping and revert
the value to a static string or local variable. This can
only be performed on translated content.

128

#howto_translate
#howto_translate

Working with Text

The Attributes tab of the Text Translation view shows all of the non-text variables that are being tracked and
adjusted in association with language changes. Unlike text references, these variables must be manually
added but can include both user defined variables, such as font names or point sizes, and model internal
variables, such as a control's position or size. This tab is the primary area where you would manage the
associations of variables, but it is possible to add variables to the translation view from the Variables view
or Application Model by right clicking on an existing variable and selecting Add Translation Variable.
Within the Attributes tab, right clicking on any of the text entry fields will show a menu of choices:

Add Variable To Translation This will open a variable selection dialog allowing
you to manually select variables that have already
been defined within the model to be associated with
a translation language change.

Update Translated Variable This is used to synchronize the value maintained in
the attribute database for the current language with
the current value used in the UI. This is a handy
option to use when you want to interactively work
through a set of language translations and make UI
adjustments interactively and save the current value
as shown in Designer.

Synchronize Selection Similar to the the functionality in the Text Refer-
ences tab, this allows the synchronization of values
for a field across multiple languages.

Remove Translation This will remove the association of a variable as be-
ing changed when a language changes. This change
is propagated to the translation attribute database.

The Translation IDs tab of the Text Translation view shows all of the translation identifiers (ids) for the
current translation set and the value of those ids for the currently selected language. Translation ids that
are currently referenced and in use are shown in bold. At this time Storyboard does not offer support for
the editing of these database values from within Designer but suggests that the values be edited in their
source database, for example the comma separated value (CSV) file in the translations directory.

Translating a Storyboard Application

Many user interfaces do not start out with translation as a primary concern. Translation and internation-
alization of a UI is frequently an activity that occurs after the main user experience issues have been ad-
dressed and a workflow established in a primary language.

When the Text Translation view is opened and no translation database has been associated with the project,
then what you will see will be an empty view prompting for a translation database to be created:

129

Working with Text

To get started translating your application, create a binding to a translation database where the text strings
for the application in the default language can be stored along with any additional attributes that need to
be considered as part of the internationalization effort for this application. Create this binding by selecting
Create Translation Database which will open a New Translationwizard:

Currently Storyboard Designer only has the ability to interface with comma separated value (CSV) mul-
ti-column language files. In these files, commonly used by translators in programs such as Excel, a single
column contains a unique identifier, then subsequent columns contain the different language values for
that identifier. For example:

ID,English,French,Spanish
1,Hello,Bonjour,Hola

If a translation database such as this is already available, then you can select it in this dialog, otherwise a
new one will be created for you. These files contain the text string information used for different text values
in different languages. It is frequently necessary to also change non-text attributes that are Storyboard
specific so these attributes are maintained in a separate database file using the same organization but
instead of unique identifiers the fully qualified path to the Storyboard variable that should be changed is
used instead:

ID,English,French,Spanish
Layer.Control.grd_width,192,310,192

These files are stored in the translations directory of the project with the name(s) that you have
provided.

Once a translation database is established, then the first thing to do is to run an analysis of the current user
interface and to establish translation mappings for the text content that is present in the default language of
the application. This can be done on a field by field basis using the entries in the Text References tab or a
full analysis can be performed using the Extra Text option. The Extract Text button in the Text Translation

130

Working with Text

view scans the all text field references and presents a dialog that allows the user to select and approve the
automatically identified translations and to create new text translations for fields that do not already have
a translation entry. This tool significantly helps bootstrap the translation process.

After this bootstrapping, the translation database file (default translations/translations.csv)
can be provided to text translators or linguists to populate with new language entries. For more details
on the best practices for editing these files to create UTF-8 encoded text strings, refer to the next section
Creating and Editing Translation Content CSV Files [#ww_utf8csv]. If the translation database file is
replaced in the project and the project re-opened, then the new language values will automatically become
available for use.

Creating and Editing Translation Content CSV Files

We have explored two tools for editing and creating translation content, Microsoft Office and Open Office
Calc. Both tools are able to save UTF-8 encoded (csv) files.

Microsoft Excel (Office 365 Version)

Microsoft Excel is a popular spreadsheet software solution that is widely adopted in many industries.

1. Using Excel, open a spreadsheet file via File > Open... (note: this can be a spreadsheet created using
Excel or Calc)

2. Save the file as a (csv) file via File > Save As > Browse

3. Choose 'CSV (Comma delimited) (*.csv)' in 'Save as type:'

4. At the bottom of the dialog, select tools > Web Options....

5. Select the 'Encoding' tab and choose to save this document as: Unicode (UTF-8).

131

#ww_utf8csv
#ww_utf8csv

Working with Text

Open Office Calc

It is free and can be downloaded from www.openoffice.org [http://www.perforce.com/product/compo-
nents/eclipse_plugin].

1. Using Calc, open a spreadsheet file via File > Open... (note: this can be a spreadsheet created using
Calc or Excel).

2. Save the file as a (csv) file via File > Save as... > Text CSV(.csv)

3. When saving a (csv) file, Open Office Calc will ask which character encoding you wish to use for
the file, be sure to choose Unicode(UTF-8).

132

http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin

Working with Text

Script Specific Text Shaping and Layout
Storyboard includes unidirectional text layout as part of the standard product offering. Support for bi-
directional (mixed mode left-to-right and right-to-left) text is provided through commercial third party
Crank Software partners.

Advanced text shaping and glyph positioning functionality for certain language scripts is provided in Sto-
ryboard by the libgre-plugins-harfbuzz plugin based on the functionality of the Harfbuzz text
shaping library (harfbuzz.github.io) [https://harfbuzz.github.io/]. This text shaping technology is depen-
dent on the FreeType font manager and advanced C++ toolchain support and is available for QNX,
MacOS and most Linux platforms.

Advanced text shaping can have a significant impact on performance so it is disabled by default. In order
to enable text shaping globally within an application for all text rendering set the text shaping script and
language values into the application level grd_text_shaper_attrs variable. The value for this vari-
able should be a string that identifies the desired text script and the language processing by their respective
ISO codes and formatted as script=<script_code>;language=<language_code>

Script tags: https://en.wikipedia.org/wiki/ISO_15924 [https://en.wikipedia.org/wiki/ISO_15924]
Language tags: https://en.wikipedia.org/wiki/ISO_639 [https://en.wikipedia.org/wiki/ISO_639]
For example, a sample Lua script to set the text shaping for Thai script may look like:

gre.set_value("grd_text_shaper_attrs", "script=Thai;lang=th")

To disable the text shaping set the value to an empty string.

gre.set_value("grd_text_shaper_attrs", "")

Most latin languages do not require text shaping support and can receive an increase in performance by
omitting the text shaping processing.

133

https://harfbuzz.github.io/
https://harfbuzz.github.io/
https://harfbuzz.github.io/
https://en.wikipedia.org/wiki/ISO_15924
https://en.wikipedia.org/wiki/ISO_15924
https://en.wikipedia.org/wiki/ISO_639
https://en.wikipedia.org/wiki/ISO_639

Chapter 17. Working with Touch,
Gestures and User Input
Configuring Touchscreen Input

Touchscreen input is a very platform specific consideration. Storyboard works with a number of standard
input devices and abstracts the implementation specific behaviours for press, release, motion and
multi-touch system events into standard Storyboard events. These input events are described in the
Storyboard standard event definitions section of this document.

The configuration details for setting up and troubleshooting two popular Linux input systems are described
in this document. For other system or touchscreen specific configurations consult the operating system or
touchscreen vendors documentation.

• Linux Target Specific Configuration: tslib

• Linux Target Specific Configuration: mtdev

Windowed Applications
On some systems, Storyboard Engine runs in a window. When running in a window there is specific
behaviour for mouse or touch input leaving the screen. When leaving while pressed, Storyboard Engine will
generate a gre.release event. When entering the window while pressed, Storyboard Engine will generate a
gre.press event. Entering/leaving a window will not generate events if there are no mouse buttons pressed
down.

Gesture Support
Storyboard gesture support is provided by the libgre-plugin-gesture plugin. The gesture plugin
options are described in detail in the Storyboard plugin option appendix of this document.

The gesture plugin interprets the inbounds press, release and motion events and based on those
observed events will generate custom gesture events. Gestures are only emitted once a release occurs
and a pattern has been matched.

Gestures are made up of a series of numbers. The numbers represent the direction that the cursor was
traveling as a grid arranged from one (1) to eight (8) ordered clockwise:

1. Up

2. Up and to the right

3. Right

4. Down and to the right

5. Down

6. Down and to the left

7. Left

134

Working with Touch,
Gestures and User Input

8. Up and to the left

By default the gesture plugin registers some default gestures

gre.gesture.up 1

gre.gesture.down 5

gre.gesture.right 3

gre.gesture.left 7

Other gestures can be created by registering them in a custom gesture definition file that is loaded by the
gesture plugin.

The gesture definition file is a comma separated value text file that contains a field for the name of the
event followed by the numeric gesture sequence string that needs to be matched to generate the event. For
example, to define a Z gesture, you could put the following in the a gesture-definition.txt file:

gre.gesture.zee,363

This definition indicates when the gesture plugin detects a right, down and left, left motion sequence that
it should generate a gre.gesture.zee event.

You can point the gesture plugin at the custom gesture definition file by running Storyboard Engine with
the option -ogesture,file=filename , where filename is the name of the project relative file,
for example gesture-definition.txt.

Gesture sequences are currently limited to 30 movements after which a warning will be generated and the
gesture entry will be ignored.

Multi-Touch Gestures
Unlike the single touch gestures, which state which gesture you have just entered, the multi-touch gestures
are events that fire whenever you have more than one finger on the touchscreen. The plugin tracks up to
five contact points, if 6 or more are present they will simply be ignored by the plugin. The events the plugin
listens to are gre.press, gre.release, and gre.motion to track the touchscreen info while only one finger
is present and gre.mtpress, gre.mtrelease, and gre.mtmotion, to track the touchscreen info while multiple
touches are present. Note when using a multi-touch enabled device single the press, release and motion
events will be sent only while there is only one touch point present. As soon as there are multiple touch
points present, all events will be mt events.

After listening to the events, if more than one touch point is present and one or more touch points move,
the plugin will do an update where it compares the old touch locations to the updated touch locations and
generates the related multi-touch gesture events. To determine how many fingers are currently being used
to generate these events, there is an npoints field in the event data.

gre.mtmove

This event uses x_move and y_move to communicate the difference in x and y of the midpoint of all
present touch touches between the current and last event sent from the touchscreen.

Data

uint32_t button

135

Working with Touch,
Gestures and User Input

uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare
float value
float x_move
float y_move
int16_t npoints

Where:

x_move The x difference between this event and last event

y_move The x difference between this event and last event

npoints The number of touch points used to generate this event

gre.mtpinch

This event uses the value data field, which will be the scale factor of the average spacing from all current
touch points compared to the spacing of all the old touch points. The scale factor is calculated by newspac-
ing/oldspacing, so a value of 1.1 indicates a growth of 10% and a value of 0.9 indicates a shrink of 10%

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare
float value
float x_move
float y_move
int16_t npoints

Where:

value The scale factor event

npoints The number of touch points used to generate this event

gre.mtrotate

This event uses the value data field, which will be the difference in rotation between the average angle
of all current touch points compared to the average angle of all the previous touch points. The value will
be in degrees.

136

Working with Touch,
Gestures and User Input

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare
float value
float x_move
float y_move
int16_t npoints

Where:

value The rotation difference event

npoints The number of touch points used to generate this event

Enabling Gesture In Your Application
By default the gesture events are treated as custom events and are not included in the available events list
for actions to bind with. You will need to add them manually the same way that custom user events are
added as described in the chapter Chapter 8, Connecting Events to Actions.

Right-click the control you want to add the action to, and select Add>Action. Then click the Add button
to the right of the Event Filter text box.

You will see the New Event dialog box. This is where you add the gesture events to the list. You will need
to do this for all the gesture events you want to use in your application, including gre.gesture.up,
gre.gesture.down, gre.gesture.left, and gre.gesture.right

137

Working with Touch,
Gestures and User Input

Now that you have added the gesture events to the application you will be able to select them in the events
list pf the Add New Action dialog to trigger an action.

By default, sbengine will search your application for use of any gesture events and gestures will be enbled
as required.

The gesture plugin can be disabled or forced to single or multi-touch mode by passing one of the folowing
options to Storyboard Engine. See the section on Plugin Options for details about command line arguments.

When running from Storyboard Designer, the gesture plugin can be configured from the Simulation Con-
figuration Dialog.

auto This is the default setting, Storyboard Engine will decide disabled, single or multi.

single Only single-touch gestures will be generated.

multi Single and Multi-touch gestures will be generated.

disabled No gesture events will be generated.

These gesture plugin options are discussed in more detail in the gesture plugin options section of this
document.

138

Working with Touch,
Gestures and User Input

Once you have configured the gesture plugin options in the Simulation Configuration Dialog, click Apply
and Run to see your changes applied to the Storyboard Engine commandline arguments.

139

Chapter 18. Creating Lists and Tables
When you have a list of repetitive visual information to display then Storyboard's table's are a convenient
tool to use. A table is equivalent to a control repeatedly applied, almost as a stamp or a template, to a grid
of row and columns. A table with a single column or row can very effectively be used to represent list
items. The controls that are created based on the number of rows and columns are referred to collectively
as table cells. A table cell is a control at a particular one (1) based row and column offset. Tables offer
automatic scrolling_layers capabilities, both interactively through touch events or programmatically using
the Table Navigate and Table Scroll actions.

To create a scrolling table that is dynamically populated with data, you will generally follow these steps:

• Create a table
• Bind variables for dynamic table cell content
• Define the list data
• Resize the table to accommodate the list data
• Assign cell variables with the list data

The data that is being used for the table can come from a variety of sources, but is generally processed
into the table cell variables using Lua. For example, your data from a database, a file on the filesystem or
dynamically injected into the application as an event via Storyboard IO. Once you have your data you will
be able to process it and assign the appropriate fields into cell variables that the control templates reference.
The following is an example of Lua data to be used in a table that was taken from the AddressBook >
Sample application shipped with Storyboard:

local contacts = {
 {image=”images/john_smith.jpg”, first_name=”John”,
 last_name=”Smith”, number=”453-555-1685”},
 {image=”images/jane_smith.jpg”, first_name=”Jane”,
 last_name=”Smith”, number=”466-555-1686”}
}

With an idea of what the table data looks like, you can build a control template to be used in the table
that will display this content. Tables are created the same way as standard controls, by right clicking in
the editor or Application View and selecting Add > Table or by dragging a Table Control from the editor
palette. The New Table dialog offers a few additional configuration options to allow you to specify an
initial number of rows, columns as well as defining the render extensions for the table and the first table
cell control template.

In the case of the data we have above, we might consider creating a table with a single column and a
table cell control template that contains an image render extension (for the image) and a two text render
extensions (for the name and number. The image name, and text content properties would each be bound
to a table cell variable to allow each table cell to contain a unique value.

In general the number of rows and columns that you create on a table that will contain dynamic content
is only going to be as large as you need it to be to show the design intent. With external data populating
the table, you will size the table appropriately using the Lua API gre.set_table_attrs(). In our
sample we have our data in a Lua table so we can easily extract determine the number or rows for the table
to be, your application data may use a different protocol.

function CBInitTable()
 -- Assume that tableLayer.table refers to our table

140

Creating Lists and Tables

 gre.set_table_attrs(“tableLayer.table”, {rows = #contacts})
end

This will configure the internal size of the table to the size of our contacts list. Once the table is dy-
namically sized, we can start filling content by assigning values to our table cell variables. This represents
the transfer of model data to visual domain data as the Storyboard variables represent content that will be
directly reflected in the UI. Table cell variables are accessed using their basename and a .row.col index:

function CBInitTable()
 -- Assume that tableLayer.table refers to our table
 gre.set_table_attrs(“tableLayer.table”, {rows = #contacts})

 -- Assume we've created cell variables named image, name and number
 local data = {}
 for (row=1,#contacts) do
 data[string.format(“tableLayer.table.image.%d.1”, row)]
 = contacts[row].image
 data[string.format(“layer.table.name.%d.1”, row)]
 = string.format(“%s %s”, contacts[row].first_name, contacts[row]
 .last_name)
 data[string.format(“layer.table.number.%d.1”, row)]
 = contacts[row].number
 end
 gre.set_data(data)
end

With this functionality in place the table is now being sized appropriately and it's display content is being
set.

If the content is too large to fit within the bounds of the table, then we will want to consider some sort of
scrolling strategy. Storyboard offers two different scrolling strategies:

Cell based scrolling using Actions and cell re-positioning
Pixel based scrolling using table xoffset and yoffset
Both internally modify the x and y offsets, so it is safe to mix and match between the two techniques.

The cell based scrolling is performed by changing the cell that is located at the top left most corner of the
visual table. This is performed using the Table Navigate or Table Scroll actions. These actions provide
flexibility with regards to the roll-over of content as well since they are simply manipulating which cells
are being displayed.

The pixel based scrolling is generally what users are expecting within a modern interactive UI. This
scrolling is enabled by selecting the Enable Scrolling property in the table's Table section of the Properties
View. Enabling this option will unlock various properties that regulate the rate at which the table scrolls
through its decay and virtual friction. These properties, and the ability to synchronize scrolling content
with other controls is discussed in Chapter 19, Working with Scrolling Content.

Most list based tables will only have a single column or single row and each cell will be rendered the same
way but with different content (mapped via table cell variables). From time to time it is desirable to have
different rendering capabilities for different cells and this can be done using different table cell templates.
Storyboard tables only support different customized cell templates on a per column basis. To use a different
table cell template, select the Cell Templates tab in the table properties section. Here you can add new
table cell templates and assign those new templates to one or more table columns. It is recommended
to name the table templates so that they can be more easily distinguised from one another. Once a table

141

Creating Lists and Tables

template is created, then selecting the table cell in the corresponding table column will edit and configure
that particular template rather than the default one.

For a more flexible and custom approach developers looking for per cell customization may want to explore
using cloned controls and a custom layout on a scrolling layer rather than using tables.

142

Chapter 19. Working with Scrolling
Content

Pixel based scrolling tables and scrolling layers provide the ability to scroll content in a smooth and uniform
fashion. Configuring table's for scrolling is covered in the chapter Chapter 18, Creating Lists and Tables.
Scrolling layers are based entirely on the bounds of their child group and control content and require a
simple property enablement Enable layer scrolling behaviour within the Properties View.

When scrolling is enabled the object that is being scrolled, be it a layer or a table, is being moved as
if it were positioned virtually and the object bounds provide the viewport into that virtual position. To
track and measure this virtual positioning there are two internal Storyboard variables grd_xoffset and
grd_yoffset that can be used to determine the virtual object position relative to the it's actual position.
Considering the y offset value, when it is at 0 the content is aligned with the top of the control. When the
y offset value is negative the content appears to be moving down.

When scrolling is enabled in the properties for an object the Storyboard Engine will start automatically
tracking any press, release and motion events targeted at the object. While a press is active, the object will
track exactly to the user motion. Once the press turns to a release, then the object will scroll automatically
based on the scrolling properties configured.

Orientation Vertical or Horizontal scrolling

Bounce Number of pixels for the scrolling object to bounce
when reaching the edge of the contents within the
object

Top/Bottom Padding Additional pixels at the top (left) or bottom (right) to
allow scrolling past the edge of the contents within
the object

143

Working with Scrolling Content

Flick Gesture If enabled, the object will continue to scroll after a
drag and release based on the momentum of the ges-
ture

Decay Maximum time in milliseconds the scrolling object
will scroll after a flick

Friction A number from 0 to 100 to determine the friction
level of the scrolling object. With higher friction it
becomes more resistant to moving when swiped and
more inclined to slowing down when released

Snap If enabled, a scrolling table will automatically have
its cell boundaries snap to the specified pixel offset
after a flick gesture is triggered. A scrolling layer
will have its offset snap to the nearest multiple of
the specified offset

Scroll Synchronization
When we have scrolling content, we frequently want some sort of visual indication of where we are within
the context of that content, like a scrollbar. Storyboard doesn't dictate what type of visual presentation is
used for this tracking, but we'll describe here how you might make a scrollbar using a simple fill render
extension. This technique can be readily applied to any other visual representation and is demonstrated in
the Scrollbar > Storyboard Sample as well as the Address Book Sample

The first thing that we want to consider is what information we want to convey to the user. For a sim-
ple scrollbar we will use a proportional measurement that represents the percentage that our y offset
positionPercent = (-1 * objectYOffset) / (contentTotalHeight - objec-
tHeight) Here, we'll assumed a vertically scrolling list, but the same principle applies for horizontally
scrolling. With this positionPercent we have a representation of where our viewport is with respect
to the total content available.

In order to apply this formula to synchronize a scrollbar representation with the content as it scrolls, we
need to have a notification of the scroll change. This can be accomplished by making an event association
with a variable as described in the section called “Triggering Events on Variable Changes”. The variable
that we want to bind an event to will be the internal variable grd_yoffset on the model object that
we are scrolling.

With an event bound to an action, we might structure a synchronization function that might look something
like the following:

-- Assume we are synchronizing a table named Layer.MyTable
function CBSyncScrollIndicator()
 -- These values could be cached, only yoffset would be changing normally
 local tableInfo = gre.get_table_attrs
 ("Layer.MyTable", "height", "yoffset", "rows")
 local cellInfo = gre.get_table_cell_attrs("Layer.MyTable", 1, 1, "height")
 local totalHeight = tableInfo.rows * cellInfo.height

 local positionPercent = (-1 * tablInfo.yoffset) /
 (totalHeight - tableInfo.height)

 -- Now apply the position_percent to your scrollbar object

144

Working with Scrolling Content

end

145

Chapter 20. OpenGL and 3D Rendering
Storyboard 3D Rendering Model

3D Rendering Fundamentals
At the most basic level, rendering of 3D content is accomplished by using matrix and vector mathematics
to transform points and directions between various coordinate spaces.

Understanding a few of the underlying concepts will help a designer make informed decisions when con-
figuring 3D Model render extensions in Storyboard Designer. Below we will explain the coordinate spaces
that are applicable to 3D rendering in Storyboard and explain how they relate to the properties of the 3D
Model render extension.

World space is a three dimensional space that serves as the basis for defining all the other coordinate
spaces. The locations of the camera and model in the 3D Model render extension properties are coordinates
in world space. It is important to note that each 3D Model render extension instance references its own
model data and is effectively a 2D portal into a distinct three dimensional world.

In Storyboard, we define the default position and orientation of the camera to be at the origin of World space
and looking down the World space negative z-axis. There are 2 primary camera modes which determine
the effect of the Camera parameters on defining View space (also called Camera space).

In “Orbit” mode, the Azimuth and Elevation parameters first rotate View space around the World space y-
axis and x-axis (respectively). The camera X, Y, Z position then position the camera in this rotated space.
By defining View space using transformations in this order, we can achieve a neat effect. If we set only
the Z position of the camera, Azimuth and Elevation now spin the camera around the World space origin,
with the camera always looking toward the origin.

In “Fly” mode, the camera X, Y, Z position define the position of the origin (0,0,0) of View space within
world space. Azimuth and Elevation now rotate the View space around the y-axis and x-axis (respectively)
of View space. This allows a camera that can freely look “away” from the World space origin in any
direction.

You may notice in the above description that the above descriptions of Azimuth and Elevation are in terms
of y-axis and x-axis, and not the z-axis. In order to simplify rotations, Storyboard does not allow the camera
to be “rolled” along the View z-axis.

The 3D Model render extension takes as a parameter a single model file per instance. Storyboard sup-
ports .obj and .fbx files as 3D model input. Since FBX file support is provided by a closed-source library
maintained by Autodesk. This library has support for limited number of platforms and architectures. To
help mitigate this limitation, and provide an opportunity for offline optimization of model data, FBX files
are converted on import to SSG (Storyboard Scene Graph) files.

The Scene Graph and Transformations
We support a hierarchical scene graph for defining a 3D scene. We define the Node to be the basic building
block. Currently a node may be a:

• Group

• Mesh

146

OpenGL and 3D Rendering

• Light

All nodes inherit the transform (coordinate space) of their parent.

Groups define a set of children nodes, and a coordinate space which all children nodes inhabit.

The complete order of transformations within a Group node is the following:

• Inherited transform from parent

• Local (bind) transform from scene graph

• Deformation transforms

• Translation

• Rotation (around X-axis, followed by Y-axis and finally Z-axis)

• Scaling

Meshes and Lights are leaf nodes.

Meshes define:

• Geometry

• Material information related to portions of the geometry.

Lights may be one of 2 types:

• Directional, best used for modelling distant constant light sources, such as the sun

• Point (or omni-directional) lights, best used for lights that emanate from a position, such as a lamp, etc.

Material Support
We support the following attributes for a material applied to a section of geometry:

• Ambient color

• Diffuse color

• Specular color (and a specular exponent)

• Emissive color

• Alpha (transparency, 0.0 completely transparent, 1.0 completely opaque)

We also support a diffuse texture map, which is currently used as a texture source for both diffuse and
ambient color.

We store the following additional information, but do not have any support for rendering at this time:

• Reflectivity coefficient

• Separate ambient map

• Specular map

147

OpenGL and 3D Rendering

• Emissive map

• Bump map

• Normal map

• Reflection map (expected to take the form of plane, cube or spherical mapping of reflection information)

Animation and Variable Support
Information on what is possible with the FBX file format is included below, but the bottom line is that
almost all 3D Modeling DCC tools dispense with almost all of this structure and bake the movements
down into a single take/layer, so in Storyboard, for simplicity, we define a 3D scene animation to have:

• n Animation Channels, containing:

• n Animation Curves

Channels are defined as a node/transform pair, such as "FrontDriversSideDoor"/RX (x rotation). These
map to rows in the animation timeline in Designer.

Curves are defined by key frames, and include a key frame time and value for the transform. These will
map to the endpoints of Animation Steps in Designer.

The Storyboard variables that are automatically associated with nodes in the 3D model are generalized
as the following variable:

Rotation RX, RY, RZ

Scale SX, SY, SZ

Translation TX, TY, TZ

Hidden State hidden

Mapping FBX Animation data into meaningful structures
Animation data specified in an FBX file for a scene takes the following structure:

• n Animation Takes, containing:

• n Animation Layers, containing:

• n Animation Channels, containing:

• n Animation Curves

Animation Takes (also called Stacks internally by FBX, but nowhere else it seems) define discrete anima-
tions that you might want to play. These quite easily map to our concept of animation clips in Storyboard
Designer. Unfortunately, support for defining Animation Takes in many DCC tools is somewhat limited,
see the note below. You can think of a Take in the film sense, "Action! ... do stuff, do stuff, do stuff... Cut!".

Animation Layers define a set of curves that you may want to play in parallel with another layer, allowing
you to essentially modulate the defined motion of another layer. An example would be a sphere moving
along a path (layer 1), while bouncing up and down (layer 2). These don't really map to anything in Sto-
ryboard, we would likely just import multiple layers of animation motion into a single clip.

148

OpenGL and 3D Rendering

Even though Animation Layers have little meaning to us, they are important because they are the container
for a set of channels/curves.

Animation channels define what precisely we are deforming. These map to rows in our animation timeline.
An example here would be "FrontDriversSideDoor, X rotation".

Each channel as mentioned above has a set of Curves, which basically map to the ends of Animation Steps
in Storyboard. The curves are defined using key frames, with a time and a value.

In reality, most DCC tools (except MotionBuilder), will require any use of layers to be baked down into a
single layer, and as mentioned above (and expanded on below), multiple takes are not natively supported
either.

Support for Animation Takes
While FBX files can have multiple animation takes embedded in a single file, 2 of the most popular DCC
tools, Maya and 3DS Max do not ship with the functionality to export the Animation Take data. These
tools have a single animation timeline, and export the animation data a single take.

Artists desiring to specify multiple animations relating to a single model or scene have a few options, but
all of them essentially defer defining this data to further down the asset pipeline.

The typical pipeline workflows are:

1. Export each separate animation into a separate FBX file. There are a whole bunch of problems with
this idea.

2. Export modelling data to Autodesk MotionBuilder (previously called FilmBox, the origin of the FBX
format) or another equivalent tool and use these to define the desired takes. These will import cleanly
into separate takes.

3. Max and Maya have a paid plugin (fairly inexpensive - $9 USD on TurboSquid as of the time of
writing) allowing the artist to define multiple takes from the Maya and Max animation timeline. These
are fairly simple tools, just defining a portion of the timeline to be each take, but are sufficient for
most purposes.

4. Define all "takes" on a single timeline (with spacers between the desired takes) and export it as is.
Use tools from the target middleware (Storyboard Designer, in our case), if they exist, to "slice" the
animation into separate animations.

In order to support workflow 4, we would have to support the concept of slicing/splitting the incoming
animations. As of Storyboard 4.2, this functionality is not supported.

Troubleshooting 3D Problems
When working with external 3D models, there are a number of issues that may occur when a model is
imported and used within the Storyboard environment. If the model does not look correct while imported
there are things that you can do both within Storyboard and within your 3D Design tools to troubleshoot:

• Zero Out/Freeze/Reset transforms. On 3ds Max this is done using Utilities > Reset XForm and in Maya
this is in the right click menu Zero/Freeze Transforms.

• Set up a point for scene root. Attach geometry in proper hierarchy to that scene root, this allows a point
to be referenced to move the whole model.

149

OpenGL and 3D Rendering

• If your textures are not showing up then make sure that you set up a project folder for your 3D model file
and when exporting the FBX make sure that you select the media encoded selection and finally ensure
that the textures that you are using are in the same directory as the imported model within Storyboard
Designer.

• Different use cases call for different model co-ordinate systems. Use world coordinate system when
using animations that have been pulled in from the FBX file. Alternatively use local coordinate system
when placing the object dynamically through Lua or Storyboard variable manipulation.

In addition to the suggestions in the Storyboard optimization chapter, there are some specific 3D content
related optimizations that can have both a visual and performance impacts.

• Use an unlit shading model. Prebake lighting/ambient occlusion first to still have a nice lighting on the
model without the runtime cost

• Turn culling on. This will have the impact of drawing less content and will speed up overall rendering
operations.

• Use smaller texture maps and consolidate texture maps where possible. This will allow the rendering
engine to use fewer resources and save on internal state transitions.

Working with OpenGL Shaders, Transforms
and Compressed Textures

Storyboard provides the ability to leverage 3D capable OpenGL hardware to transform model elements,
create custom GLSL shader effects and to display 3D model objects.

3D Transforms and Custom Shaders
In the Properties View for control and layer model elements there is an Advanced and OpenGL section
that exposes transform options for the selected model object.

150

OpenGL and 3D Rendering

The X/Y/Z 3D Rotation transform properties allow the layer or control to be rotated around an imaginary
axis that runs through the center of the object. This can be used to achieve simple perspective changes on
an object, for example a cover flow style roll-over effect. These 3D rotation properties can be bound to
variables and used any place a normal variable would be including animations and scripted data changes.
The OpenGL3DModel Storyboard Sample rotates it's text field layer using a 3D rotation.

Also located within this Advanced and OpenGL property panel are properties for OpenGL Vertex and
Fragment Shaders. These GLSL shaders can be provided as files and when provided will be used to process
the control or layer after its base content has been rendered. Similar to the 3D Rotation properties, these
files can be associated with variables and changed dynamically at runtime.

A complete description of OpenGL ES 2.0 shaders is beyond the scope of this document and the
GLSL shader language itself is better treated in detail in the OpenGL ES Shader Language [http://
www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf] specification. This chap-
ter will focus on the shader programming aspects that are relevant to Storyboard developers.

Note

At this time, shader effects are not visible within the tool and are only visible when using an
OpenGL based Storyboard Engine.

The shaders that are specified in the properties will be applied to the resulting texture that is the outcome
of having all of the current render extensions applied to it. That is to say that the control is effectively
rendered as it would be in the normal sense, but the final result is provided as a texture to the shaders to
manipulate before it is finally rendered to the display.

Shader programs have three types of variables: attributes, varying, and uniforms. Attributes are passed
into the shader from the render manager and contain data such as vertex locations, and texture coordinates.
Varying variables are calculated in the vertex shader and passed into the fragment shader after being
interpolated based upon the location of the fragment. Uniforms are also passed in from the render manager,
but are typically used for purposes other than storing the geometry being rendered, for instance, containing
a global alpha value which can be used to blend an entire model.

When writing a shader program, it is important to follow the conventions for attributes and uniforms
established by the render manager. Otherwise, it will not be able to pass in geometric data and nothing
will be rendered. Below is a minimal vertex shader which matches the functionality of the built in vertex
shader for images.

attribute vec4 myVertex;
attribute vec4 myUV;

varying vec2 vtex;

uniform mat4 projMatrix;
uniform mat4 mvMatrix;

void main(void)
{
 gl_Position = projMatrix * mvMatrix * myVertex;
 vtex = myUV.st;
}

The myVertex and myUV attributes contain vertex and texture coordinates respectively. The projMatrix
and mvMatrix contain the projection and modelview matrices, which are used to transform the input vertex

151

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

OpenGL and 3D Rendering

position, which is then assigned to the gl_Position for the vertex. The varying vtex is used to hold the
interpolated texture coordinate which is then passed to the fragment shader. The render manager looks
up myVertex, myUV, projMatrix and mvMatrix by name when it loads the shader, so these names must
be used in any custom vertex shader. The varying name must match between the vertex shader and the
fragment shader.

Below is a fragment shader which matches the functionality of the built in fragment shader for images,
and shows the minimal code required to work with the Storyboard render manager.

#ifdef GL_ES
precision mediump float;
#endif
uniform sampler2D sampler2d;
varying vec2 vtex;

void main (void)
{
 gl_FragColor = texture2D(sampler2d, vtex);
}

The initial precision declaration is required by OpenGL ES, but not supported by OpenGL, and is set with
a preprocessor conditional. The sampler2D uniform controls which texture unit is used when sampling a
texture. The render manager only supports a single texture. The varying variable is interpolated based upon
the vertex values in the vertex shader, and is passed into the sampler to look up the color at the fragment
location. This is assigned to gl_FragColor and becomes the fragment color.

It is also possible to pass data from Storyboard variables to shader uniform variables, subject to two con-
straints: the model element for the variable must be the control for which the custom shaders are being used
and the variable type must be float. When the custom shader is loaded, a list of all of the uniforms present
is created. The name of each uniform is then compared to the list of variables attached to the control, and
if a matching name of the appropriate type is found, it is used to the set the value of the uniform when
the control is rendered.

As an example, consider animating a custom shader to do a simple fade-in based upon the value of a timer.
First, create a variable of type float called "current_time" for the control with the custom shader. Then
create an animation using the animation timeline which changes the value of the variable from 0.0 to 1.0
over a few seconds, and create an appropriate trigger for the animation, for instance a mouse press event.
Then, edit your fragment shader as follows:

#ifdef GL_ES
precision mediump float;
#endif

uniform float current_time;
uniform sampler2D sampler2d;
varying vec2 vtex;

void main (void)
{
 gl_FragColor = texture2D(sampler, vtex) * current_time;
}

152

OpenGL and 3D Rendering

When the control is rendered, the value of the uniform current_time will be set from the value of the control
variable current_time, which will cause the color read from the texture to be scaled from 0.0 to 1.0 over
the duration of the animation, causing a fade in effect.

Custom Shader Support
Storyboard supports custom OpenGL ES shaders written in GLSL. Shader programs can be attached to
controls by creating a vertex and fragment shader program. These programs are then compiled at runtime
and used by the Storyboard Engine. When creating a shader the uniforms can be manipulated in Storyboard
Designer through variables. The naming of the shader uniform determines how it's variable is resolved.
All shader variables must be float type variables. The uniform naming can be prefixed in order to tell
Storyboard which context to resolve the variable:

grd_a This variable is resolved at the Application level

grd_l This variable is resolved at the Layer level (layer
where the control is)

grd_g This variable is resolved at the Group level (group
where the control is)

grd_c This variable is resolved at the control level (control
where the shader is connected). This is the default
if no prefix is used.

Fragment shader Example:

All variables can be created at the application level. The variables would be:

r float

g float

b float

a float

The program would be:

uniform float grd_a_r;
uniform float grd_a_g;
uniform float grd_a_b;
uniform float grd_a_a;

void main (void)
{
 gl_FragColor = vec4(grd_a_r, grd_a_g, grd_a_b, grd_a_a);
}

Vertex shader Example:

attribute vec4 myVertex;
attribute vec4 myUV;

varying vec2 myTexCoord;

153

OpenGL and 3D Rendering

uniform mat4 projMatrix;
uniform mat4 mvMatrix;

void main(void)
{
 gl_Position = projMatrix * mvMatrix * myVertex;
 myTexCoord = myUV.st;
}

Compressed Textures
The OpenGLES 2.0 render manager now supports compressed textures on supported hardware. The for-
mats supported are PVRTC1, both 4BPP and 2BPP. This compression format is supported on most Pow-
erVR graphics chipsets.

To determine if the chipset supports it, running Storyboard with a verbosity level of 6 (-vvvvvv_ will
print out, on startup, the GLES extensions supported by the chip. If PVRTC is supported, you will see
GL_IMG_texture_compression_pvrtc in the extension string list.

Storyboard will manually decode these images if the runtime being used does not support them. Should a
project that was running on a PowerVR chip and using compressed images be run on a SW runtime that
does not support them, the images would still decode and render correctly, just without HW acceleration.

PVRTC provides a 8x improvement in memory size (A 1024x1024x4 BMP would take 4MB of memory,
whereas a PVRTC image would take 512K)

Compression tools can be found at:

• PVRTexTool [http://community.imgtec.com/developers/powervr/tools/pvrtextool/]

• Using texturetool to Compress Textures [https://developer.apple.com/library/ios/documentation/3D-
Drawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html]

154

http://community.imgtec.com/developers/powervr/tools/pvrtextool/
http://community.imgtec.com/developers/powervr/tools/pvrtextool/
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html

Chapter 21. Working with Audio and
Video

Storyboard includes a media plugin for Storyboard Engine that supports the playback of several different
types of audio and video formats. The media plugin provides a common action interface for creating and
controlling media playback using a variety of different backend media player services.

It is the backend services that perform the decoding of content. The display of that content may be to a
Storyboard External Buffer render extension which will be composited into the Storyboard application,
or the service may have the ability to render to discrete hardware layers available on the platform and
composited to the Storyboard application directly in hardware.

External media backend services are provided for particular operating system and hardware based on
their underlying media support. Currently Storyboard provides two external media backends, which are
described in the section called “Media Backend Services”.

Note

Audio and Video support is not universally available on all embedded target platforms. It is how-
ever available on MacOS, Linux and Windows desktop simulation platforms.

Video and Audio playback and control are accomplished by using a set of defined actions. When creating
a media application you must include these media actions in your Storyboard project. The media actions
must be installed on a project by project basis and are defined as Action Templates. The media action
template is located in your Storyboard installation root under the directory Samples/ActionDefin-
itions/media.sbat. Copy this file to the templates directory of your project in order to be able
to use media actions in your project. Once you have copied the file over, you will have to close and re-
open your application to see the media actions.

In order to create a Storyboard application that will play video, you must first add a control to your project
containing an External Render Extension. This render extension will be the display target where the video
content will be rendered, so size and position it appropriately in your application. In the properties of the
external render extension you must set the Buffer Name and Object Path values. These values will be
required to play the video properly and will be used to point to where the video content should be displayed.

To initiate video playback, you will use one of the media actions. You will need to add the predefined
media action gra.media.new.video to your application, which will tell the media plugin to play
your video. As discussed in Chapter 8, Connecting Events to Actions this action can be configured to be
a response to any event.

In the action parameters, you will specify the Channel_name parameter, which will be used as the name of
the Storyboard IO channel that will be created for communication with the media plugin. The channel name
should not conflict with the application name and should be relevant to its use, a good suggestion might
be media. Specify the project relative name of the video file to play in the parameter Media_name, for
example video/myvideo.webm. Additionally fill in the parameters that will link the media command
to the external buffer where the playback is to occur. For this you configure the External_buffer_name
with the same name as the Buffer Name used in the external render extension and the Object_name with
the same name as the Object Path. The Output_width and Output_height should also match the dimensions
of the external buffer. Finally the parameter Output_depth should be set to 4.

Other media actions allow you to control the video playback operation once it has been started, including
providing pause, resume, stop and seek action commands. Storyboard Designer includes a media appli-

155

Working with Audio and Video

cation in its samples named Media. For more information on loading samples, refer to the section called
“New Project from a Storyboard Sample”.

Media Backend Services
The media backend service does the work of decoding, playing and controlling the media based on requests
from the Storyboard application over a Storyboard IO channel. The default Storyboard IO channel name
is com.crank.media_backend. This value can be overwritten by setting the SBMEDIA_CHAN-
NEL_NAME environment variable to a new value. The FFmpeg plugin is loaded automatically when it
is present in the Storyboard plugins directory. If the gstreamer-backend is going to be used to play media,
the FFmpeg plugin needs to be removed from the Storyboard plugins directory or else both backends will
compete to service media requests.

GStreamer Application
This media backend uses the gstreamer framework to play and control audio and video files. In order to use
this backend the platform must have gstreamer and the required plugins installed. It is a good idea to try
and play content with the “gst-launch” application to ensure a proper installation before running gstream-
er-backend. This backend also uses Storyboard IO for communication with the Storyboard application so
please ensure Storyboard IO is functional and the application has the “greio” plugin loaded.

Options:

-e : Render the video content with an external buffer

-p pipeline: Use the defined gstreamer pipeline to play the media

-v: increase verbosity, debug output

Action Data The “new.audio” and “new.video” actions take an extra_data argument. This argument
is a string which can contain the following options which must be separated by a “;”.

GStreamer Pipeline
You can specify the gstreamer pipeline used to play the particular media by either passing it on the com-
mand line to gstreamer-backend with the -p option or by passing it to the actions. The pipeline can be
passed in as:

“pipeline:[your pipeline]”

This pipeline can be similar to the one used with the gst-launch application with a few minor modifi-
cations. In order to allow the changing of the media file the first part of the pipeline must contain a named
filesrc element as follows:

“pipeline:filesrc location=video.mov name=media-src”

Doing this will allow the code to find the named element and replace the location with a new video file.

FFmpeg Plugin
This is a plugin to Storyboard which uses the FFmpeg libraries to play and control audio and video files.
In order to use this backend, the plugin must be included with in the runtime engine. You can play a video

156

Working with Audio and Video

from the Storyboard Designer Simulator, as well as using the Storyboard Engine on supported platforms.
Note that at this time, FFmpeg ships with only WebM video format support and Ogg audio format support.

Action Data The “new.audio” and “new.video” actions take an extra_data argument. When using
FFmpeg, no extra data is required and this argument can be empty.

157

Chapter 22. Multi-File Application
Development

Storyboard projects generally keep all of the model structure within a single application model file. For
large products that have very discrete and well separated areas of development, then Storyboard offers
the possibility of segmenting this functionality into multiple application development model files. How
to create multiple model files is created is introduced in the section called “Working with Multiple Appli-
cation Design Files”. Once multiple model files are created, then development can proceed in the same
fashion as described in the chapters on general application development.

When it comes time to relate the disparate model files to one another and simulate and export the result,
there are some differences from the standard Storyboard development process that are worth considering.

Screen transitions provide the means to tie together multiple applications to form a single, larger, unified
application.

In order to indicate that one application (the source application) will be making a reference to screens in
another application (external reference), the source application should list the external application in its
Properties. Go to Application > Properties > External Model References

Once an application is added as an external reference, the screens from that application will show up in
any of the Screen transition selection lists as well as any animation definitions..

Layers from any listed external applications can be added to an application by explicitly importing them
using:

Add > Existing Layer > Import External Layer

158

Multi-File Application Development

Once a layer is added as an external layer, then a copy of the original layer from the external application
is snapshotted and incorporated directly into the source application. At this point, the external layer can
be used with any source application screens just like any other layers.

Simulating and Exporting Multiple Model Files
Once applications have been developed, shared content leveraged, and transitions between application
screens established the next step is to simulate or export the unified application.

The Storyboard simulation configuration dialog, accessed via Run > Storyboard Simulator Configurations
allows multiple model files to be specified. All models in the 'Selected Models' block will be included in
the application when launched.

159

Multi-File Application Development

The first source application in the list (tagged as Primary) will be used to determine the unified application's
launch screen.

Similarly exporting a runtime application to be used with Storyboard Engine, Android, or iOS targets also
allows multiple Storyboard application files to be selected. In these export scenarios, you will be prompted
to select the source application that should be used for the unified application's launch screen.

If there are no conflicts among the selected applications they will be merged together and converted into
a single unified application and used for the user-selected operation of simulation or export.

If there are conflicts among the resources then the differences will need to be resolved before continuing
with an application merge.

Resolving Conflicts and Synchronizing
Changes

When multiple applications are merged together to form a unified application, the following occurs:

• All layers from all applications are assembled together into a unified list of available layers. If two or
more layer names are the same then those layers have their content compared. If the content is identical
then the merge continues. If the layer content differs, then an error is flagged and the user will be
prompted to resolve the differences and the application merge stops.

• All application/global level variables from all applications are assembled together into a unified list
of global variables. If two or more variable names are the same then those variables have their values
compared. If the values are identical then the merge continues. If the variable values differ, then an error
is flagged and the user will be prompted to resolve the differences and the application merge stops.

• All animation definitions from all applications are assembled together into a unified list of available
animations. If two or more animation names are the same then those animations have their definitions

160

Multi-File Application Development

compared. If the animation definitions are identical, the merge continues. If the animation definitions
differ, then an error is flagged and the user will be prompted to resolve the differences and the application
merge stops.

• All screens from all applications are assembled together into a unified list of available screens. If two
or more screens have the same name, then an error is immediately flagged and the user is prompted to
resolve the differences.

The external referencing of model elements relies on names remaining consistent during the application
development. In some instances, if names change it may be possible for content to become unsynchronized
and it may need to be resynchronized on an application by application basis.

The application properties page provides a synchronization action that scans the project for externally
referenced content and then compares that content to the source reference. If there is a difference, then the
difference is flagged as a conflict for resolution and the user is prompted for different ways to solve the
conflict based on the nature of the issue

161

Chapter 23. Reusable Graphical
Components

Storyboard Designer allows developers to create re-usable design components that can be shared among
multiple projects. Components combine model elements, such as groups and controls, together with graph-
ical assets such as fonts and images plus interaction rules such as events and animations. The ease with
which these re-usable elements can be created based on custom graphical design elements makes them
significantly different than traditional widgets that offer a fixed behavior and are difficult to create.

A component is created by selecting a Storyboard Designer group or control model element in the Story-
board editor or the Application View and right clicking and selecting Create New Component. A dialog
will prompt for a component name, description, and additional animations and resources to include in the
component. Components are saved by default in the project's templates and use the file extension sbc
which stands for Storyboard Component.

Components located in the templates directory are automatically loaded into the Components View.
To use a component simply drag the component into the Storyboard Editor into a visual design context.
The first time that a component is used, all of the resources associated with the component (images, fonts,
scripts and animations) will be extracted into the local project. Subsequent uses of the component will not
overwrite the initial resources. If there is a name conflict with resources that are already in the project,
then the default behavior is to use the existing project resources and not to overwrite the project resource
with the template resource.

When a component is used within an application, a link is established between the component definition
and each instance where that component is used within the application. This association allows components
to be changed and for those changes to be applied as updates to any existing instance of the component.

Creation Guidelines and Conventions
Components provide a lot of freedom to users with regards to packaging re-usable content. However,
there are some guidelines that if followed will reduce the potential for confusion when your component
is applied to a number of projects.

Favor Groups over Controls While it is possible to create components from a single control, this
is generally only useful for the simplest of components. In order
to manage interactive state, provide feedback and handle input it is
better to use a group to provide a consistent namespace for controls
and variables.

Use a Consistent Name Prefix Components are intended to be created in the context of one project
and then shared and used in other projects. However, since a com-
ponent packages all of its images, fonts, scripts and animations with
it, there is always the potential for name conflicts to occur. To min-
imize the change of conflict it is suggested that you name all of re-
sources with a prefix that links them to component. For example
Crank provided components use following naming convention:

• A prefix name is established using a prefix of SBC followed by
the name of the component. For example SBCPushButton

• All image resources use the prefix name (e.g., SBCPushBut-
tonBevel.png)

162

Reusable Graphical Components

• All animation definitions use the prefix name (e.g., SBCPush-
ButtonFadeOut)

• All Lua script files use the prefix name (e.g., SBCPushBut-
ton.lua)

Keep Lua Scripts Isolated In order to avoid any conflict within the Lua namespace it is impor-
tant to not only identify the Lua script file(s) used by the component
but also to ensure that all of the Lua functions and variables used by
the component do not conflict with anything else in the application.
This means ensuring only a minimal set of callback functions are
exposed and that the local keyword is rigorously applied.

Provide Change Notification via
callback Variable

In many component situations is it desirable to remove the user
from the mechanics of what a component is doing within the UI and
to simply provide status information as a final result. For example a
check-box button might have a selected/unselected state or a slider
might have a percentage result that they indicate. In these cases it
is a convention to use a variable associated with the group named
callback that is typed as a Lua function variable. This allows the
user to set different callback functions for different instances of the
component but use the same controlling logic.

Editing Components and Propagating Changes
There are two ways to change and update a component after it has been created.

The first way is to simply use the component in an application, make the modifications that you want and
then to save the component back as a new component, potentially overwriting the previous file. This is the
same process used to create the initial component, the only difference being that you started the process
by using a component to seed the initial functionality and behavior. This technique is most applicable
when you want to introduce significant structural change to a component, for example adding or removing
controls, render extensions or actions. In these situations the component you are creating is not really
related any longer to any instances that they user may have created and would be difficult to synchronize
while guaranteeing compatible behavior.

The second approach for updating a component is most suitable when you want to make cosmetic changes
to the component and have those changes be applicable to any of the current instances of the component
in the application. In this case you can edit the component file directly from the templates directo-
ry launching a Component Editor. When you do this, the component will automatically be opened and
applied to a sandboxed Storyboard project containing a single screen and single layer. From within this
sandboxed project, you can change the existing properties such as color, images or variable values. When
the component is edited in this fashion, it will save a history of what properties have been changed along
with a new internal revision number.

When components are changed using the Component Editor technique the changes that are recorded with-
in the template can be applied to components that have been used in the current application. From the
Component View select the component to update and right click and select the Update Instances option.
This selection will scan the application for any uses of the component that are not already synchronized
with the latest changes in the template and offer to synchronize the changes for you.

163

Chapter 24. Collaboration and Team
Development

Traditional development techniques rely on a common source code repository that is revision controlled
using tools such as SVN, Perforce, Clearcase, GIT or Mercurial. Storyboard Designer projects are designed
to be directly integrated into this type of environment so that the UI can be shared and improved by many
developers working in parallel.

Revision Control System Integration
In order to provide an integrated support for various revision control systems, Designer uses the Eclipse
Team Provider plugins. Plugins are available for most revision control systems from marketplace.e-
clipse.org [http://marketplace.eclipse.org]. Here are links for several of the more common/popular plugins:

• Subversion svn Plugin: http://marketplace.eclipse.org/content/subversive-svn-team-provider

• Mercurial hg Plugin: http://marketplace.eclipse.org/content/mercurialeclipse-was-hgeclipse

• GIT egit Plugin: http://marketplace.eclipse.org/content/egit-git-team-provider

• Perforce p4 Plugin: http://www.perforce.com/product/components/eclipse_plugin

Comparing and Merging Model Files
The Storyboard Designer model file is a single model file. Conflicting changes to this model file can be
visually inspected and merged from within Designer using the model comparison tools.

To compare two Designer files within the same project or file system workspace. Select both of the model
files (e.g., file1.gde and file2.gde) in the Navigator view. Right click and select Compare With
> Each Other from the menu.

To compare a Designer file that is in under revision control to a previous version, right-click on the file and
select the menu entry Compare With. Different version control systems provide different specific terms,
but . In the sub-menu you can select Latest from Repository or Revision if you want to compare with a
specific version.

In either case, local comparisons or comparisons with versions from a revision control system, the com-
parison will open an editor that will highlight the differences in the model elements in the two files and
allow each of the changes to be viewed in context and merged or discarded as may be required by the
final design.

164

http://marketplace.eclipse.org
http://marketplace.eclipse.org
http://marketplace.eclipse.org
http://marketplace.eclipse.org/content/subversive-svn-team-provider
http://marketplace.eclipse.org/content/mercurialeclipse-was-hgeclipse
http://marketplace.eclipse.org/content/egit-git-team-provider
http://www.perforce.com/product/components/eclipse_plugin

Collaboration and Team Development

Triggering a comparison provides a hierarchical breakdown of the models' objects, with two sides repre-
senting the two files. Any differences between the two models will be highlighted in yellow. The two types
of differences are property changes and additions/deletions.

Property changes show the value on both sides of the viewer. Changes are marked by a delta icon between
the two tables in the two reference comparison or an arrow representing the direction of the change when
three reference points are available. The three reference point comparison is usually only available when
a source control system is available to provide the revision history.

For additions/deletions, the side representing the file that has the object will show it, and the other side
will show empty space. Additions and deletions are marked by a + or - icon, and an arrow representing
the direction of the change when three reference points are available.

In addition to changes, the comparator will also show any unchanged objects/properties, for reference
and context. They are displayed in gray text, with no background color. In a three way comparison with
an ancestor, it is possible that a conflicting change exists, where both sides have modified the same ob-
ject/property from the original ancestor. These will be highlighted in red.

The toolbar contains actions and options to merge changes and switch the view. From left to right, here
is a description of each one:

• Toggle Graphical Compare: Enables the graphical compare, which will appear on the bottom half of the
screen and allow the user to visualize the changes on a model object.

• All Changes Filter: Displays all changes across all model objects.

• Application Filter: Displays changes on the application level. This includes application properties, and
any application level variables or actions that have been added or deleted.

• Screen Filter: Displays changes on the screen level. This includes screen properties, layer instance prop-
erties and layer instance additions/deletions.

• Layer Filter: Displays changes on the layer level. This includes layer/control/render extension properties
and control/render extension additions/deletions.

165

Collaboration and Team Development

• Animation Filter: Displays any changes related to animations.

• Toggle Unchanged Properties: Shows or hides the unchanged objects/properties.

• Copy Left-Right/Copy Right-Left: Merges changes that have been selected in the viewer. If a model
object is selected, any changes to its children will be merged.

• Copy All Left-Right/Copy All Right-Left: Merges all changes. In the two way case, this is non-destruc-
tive and will not delete any deletions, but will add the additions. In the three way case, this respects
the direction of the changes.

After making changes, saving the comparator tab will appropriately save the changes to the model file(s).
Exiting the comparator without saving will revert any applied changes. The global undo/redo functions
are also available to revert and re-apply changes.

If you are working from a command line environment, or integrating Storyboard project merging into
a continuous integration environment where file merges must happen automatically with a binary pass
(merge successful) or fail (merge conflict), then Storyboard provides a command line merge tool for you to
use: ${SB_DESIGNER_EXT} -nosplash -application com.crank.gdt.merge.gde-
merge ${ancestor} ${current} ${other} Here the ${SB_DESIGNER_EXT} represents
the path to your Storyboard Designer executable and will vary based on your operating system and installa-
tion path. For a standard windows distribution you would find the Storyboard Designer binary in C:\Pro-
gram Files\Crank Software\Storyboard_Designer\Storyboard.exe while on a Ma-
cOS system is may be /Applications/Crank_Software/Storyboard_Designer/Story-
board.app/Contents/MacOS/Storyboard.

The values of ${ancestor} ${current} ${other} are the full paths to the files being compared
and are designed to align with external source management tools such as subversion (svn) and git. The
merged content will be stored into the ${current} file by default but can be redirected by specifying
-output=newfilename. As an example of how to use this merge command with a command line
git client, put the following in your .gitconfig file: [mergetool "mergegde"] cmd =
\"C:\\Program Files\\Storyboard_Designer\\Storyboard.exe\" -nosplash -
application com.crank.gdt.merge.gdemerge -quiet=1 $BASE $LOCAL $REMOTE
trustExitCode = false Assuming that the mergegde is specified as the merge tool for all
*.gde files then this will invoke the Storyboard specific merge for model files.

In addition to the merge tool built into Designer, there is a standalone comparator application that allows
for an automated merge as well as a manual merge with a visual diff. The application will first attempt
an automatic merge of the provided content. If that fails due to the discovery of a conflict, the visual diff
will appear and allow the user to merge manually. The application is packaged in Storyboard alongside
Designer, and makes use of the exact same command line options as above along with two new ones.
Specifying -headless will suppress the visual diff regardless of the result and just attempt an auto-
matic merge, exiting if a failure occurs. Specifying -manual will skip an automatic merge attempt and
jump straight into the visual diff of the files. Similarly, this is what a mergetool entry would look like
in .gitconfig: [mergetool "mergegde"] cmd = \"C:\\Program Files\\Story-
board_Comparator\StoryboardComparator.exe" [-quiet] [-headless|manual]
[output=/path/to/result.gde] $BASE $LOCAL $REMOTE

Comparing and Merging Projects
Entire projects and directory structures can be compared as easily as comparing single model files. This
will allow developers to understand which resources such as images, fonts and script files have changed
in addition to the changes to the model logic. The same as a model file comparison, this can be performed
by right clicking on two projects or directories and selecting Compare With > Each Other from the menu.

166

Collaboration and Team Development

When this comparison is done a hierarchy is presented indicating files that have changed, been added or
removed from the source or the destination directory. Selecting any of these files will open a comparison
editor that is appropriate for that file type.

Exporting Storyboard Projects for Sharing
Storyboard Designer gives you the ability to export your project for either archiving, sharing or demo
purposes. Here are a couple of easy steps showing you how to do that.

When your Storyboard Project is complete and you are ready to export, right click on the project folder
and select Export.

Next you will be presented with the Export Selection dialogue. Expand General by clicking on the triangle
to the left of the folder. Select Archive File and then click Next.

167

Collaboration and Team Development

Next you will see the Export Archive file box. Here you will see all the folders and files that will be
included in the archive you are about to create. Browse to the location where you want to save and then
provide a name for your archive. Review and verify your Options and then click Finish.

168

Chapter 25. Exporting and Running on
your Embedded Target

A Storyboard application can be exported in several different ways. The output of the export process is
what is considered a Storyboard Deployment Bundle. Depending on the bundle packaging these can be ran
by sbengine, installed on an iOS/Android based mobile platform, executed on Windows as a normal
application, or used by the user to compile into their RTOS application.

In the past deployment exports were done through a few different export wizards, but as of Storyboard
5.0 these have been consolidated into a single export configuration system. This export system allows the
user to create, save, and share their application export parameters. These configurations can be customized
through the Storyboard Application Export Configuration dialog.

Export Workflow
To export a Storyboard Deployment Bundle, right-click the Storyboard application file (*.gde) and select
Storyboard Export, and choose the deployment type.

An export can also be launched by clicking on the Storyboard Application Export button in the toolbar.
This button will launch the first export configuration found for the current application, or create one if
none exist.

The Storyboard Export Configuration dialog will appear the first time an application is exported for de-
ployment. This dialog allows you to customize how the application is exported and can be accessed at any
time by clicking on the Storyboard Application Export Configuration button in the toolbar.

The export dialog is separated into sections that take you through the required elements of an export.

169

Exporting and Running
on your Embedded Target

Application Model To Export The first export parameter block is the selection of which applica-
tion model file (*.gde) files to export. Selecting more than one
will cause these files to be merged when exporting the deployment
bundle.

Generic Model Export Options The second export parameter block lists generic Storyboard Model
export options. These are options that are independent of the spe-
cific packaging format but apply generically to the model.

The Generate condensed output option determines if extraneous
character information is removed from the exported model file.
The Generate precompiled Lua option will attempt to pre-compile
the project's Lua scripts to bytecode prior to packaging. Only the
top level files in the project's scripts directory will be compiled
into platform independent bytecode. Compilation uses the same file
names as the original files so this option is only available when the
user is exporting to a directory other than the project directory.

Export Packaging The third export parameter block determines how the exported
model should be packaged. These packages and their options are
described below.

Export Transfer The final export parameter block is where the packaged content
should be saved or transferred. Currently transfer methods include
copy the package to the local filesystem or transferring it to a target
over the network using scp. The transfer methods and their options
are described below.

Once the user has finished customizing their export configuration they can click the Apply button to save
the configuration and the export can be launched by click on the Run button. The application will then be
exported according to the configuration.

170

Exporting and Running
on your Embedded Target

Selecting Files For Export
All of the resources used by the application (images, fonts, scripts, translation files etc) must be available
at runtime and included in the bundle packaging. The exporter will automatically select common resources
but the packaged content can be customized using the Export Resources tab of the export wizard

The common resources extracted from the Storyboard application's project include:

• The images directory content. These are image assets that are required by the application.

• The fonts directory content. These are fonts that are required by the application

• The scripts directory content. These are usually Lua script files that provide glue logic for the ap-
plication

• The translations directory content. These are usually translation files used by the application

Users may include additional content or exclude specific files as required by the application. The directory
structure of the exported bundle package will reflect the same directory structure as used in the Designer
project and should be maintained when the deployment bundle is moved to an embedded target.

Deployment Bundle Packages

Storyboard Embedded Engine (GAPP)
This will export the application as a GAPP file. The application resources will be transferred along with
the GAPP file. This is the default package when exporting a new application.

Storyboard Compressed Package (SBP)
Export the application as a compressed package. The exported .sbp file will contain the application re-
sources that were selected.

The following are parameters available for the Storyboard Compressed Packaged export

Encrypt exported package The user can choose to encrypt the exported SBP package.

Native Android Application (APK)
Export the application as a Android Native Application. The exported .apk file will contain the application
resources that were selected.

The following are parameters available for the Native Android Application export

Application Parameters These parameters allow the user to change the application name, the
APK file name, the application UID, and the application version in-
formation. Other parameters allow the user to change the application
orientation, scaling, and whether the status bar is shown.

Application Name The name that will appear on
your device's UI for the app.
This name doesn't have to be
unique

171

Exporting and Running
on your Embedded Target

Android Package File Name This is the name of the apk file
that is exported. This name has
no effect once your application
is installed.

Android Unique Application Iden-
tifier

This ID uniquely identifies
your app on the device and
in Google Play Store. It looks
like a Java package name (ie.
com.example.myapp).

Runtime Parameters This is where the user specifies the Storyboard Runtime to export in
the APK. The user can also specify runtime options here.

Manifest Parameters Here the user can set their shared object list and add additional per-
missions to the Android manifest file.

Icon Parameters Here the user can set the icons for the application.

Native iOS Application
Export the application as a iOS Application. The exported .app file will contain the application resources
that were selected. This option is only available on MacOS development platforms and requires that the
iOS mobile development environment be configured prior to export. This configuration is discussed in the
chapter the section called “Exporting to iOS Devices”.

The following are parameters available for the Native iOS Application export

Application Parameters These parameters allow the user to change the application name, the
company identifier, the signing identity and provisioning profile. Oth-
er parameters allow the user to change the application orientation, scal-
ing, whether the status bar is shown.

Runtime Parameters This is where the user specifies the Storyboard Runtime to export in
the app. The user can also specify runtime options here.

Icon Parameters Here the user can set the icons and launch screens for the applica-
tion. There are different images for different types of iOS devices, i.e.
iPhone, iPhone retina, iPad, iPad retina.

Windows Standalone Launcher (EXE)
Export the application as a standalone Windows application. The exported .exe file will contain the appli-
cation resources that were selected.

The following are parameters available for the Windows Standalone Launcher export

Windows Standalone Launcher Pa-
rameters:

The user specifies the Storyboard Runtime to export in the exe. The
user can also specify runtime options here.

Storyboard Embedded Resource Header (C/C++)
Export the application as a set of C/C++ header files. This will export one or more header files that can be
used in conjunction with the Storyboard RTOS SDK product which generally requires a direct compilation
of the Storyboard application into the system image. There are a number of parameters available for this
export, the full context of use for these options are described in the Storyboard RTOS SDK users guide.

172

Exporting and Running
on your Embedded Target

The following are parameters available for the C/C++ Resource Header export

Draw images directly from code
storage (Flash/ROM)

This option relates to how the images used in the Storyboard appli-
cation are going to be treated by the engine on the embedded sys-
tem. Standard compressed image formats such as PNG or JPEG re-
quire decoding to a temporary buffer prior to display. This requires
additional dynamic memory that may be beyond what the hardware
platform has available. In order to support these smaller memory
configuration systems with a graphically rich user interface, Story-
board Designer can pre-decode the images to a format that is di-
rectly compatible with the system's display output. When this oc-
curs, the image data can stay resident in read-only memory and the
Storyboard Engine can render it without incurring any additional
dynamic memory overhead.

Export Model/Resources/Bitmap
Fonts

The C/C++ header export is split into three separate header file
choices one for model, one for the image and file resources and one
for the bitmap fonts (if they are being used). By default these files
will all point to the same header file location, but they can be sep-
arated if that is more suitable for your development purposes. The
paths specified are paths that are relative to the output location set
in the Transfer section.

The bitmap font header selection is only required if the platform
configuration does not include a dynamic font rendering engine,
such as FreeType. In the absence of a font engine, which would use
the TrueType font files directly, the fonts and glyphs must be pre-
rendered for use by Storyboard's bitmap font engine. The number
of glyphs generated is dependent on the content of the font files and
the quality of the font rendering is controlled by the Alphamap Font
selection. The more bits that are used, the smoother the font will
render but the larger the resulting data will be

Export Transfer Methods

Filesystem

Copy the deployment bundle to a directory on the filesystem. The user can choose to export to the project
directory or select another directory on the filesystem to copy to. This is the default transfer method when
exporting a new application.

SCP Transfer

Copy the deployment bundle to a target via scp. The user needs to enter the target address (either hostname,
IP address or mDNS service name eg: 'mydevboard.local' if supported), the username and password, and
the target directory they want to copy to. Selecting the Post Transfer Script option will allow the user to
execute a script on their target post launch. This could be used to launch the application they exported.

After running a export the scp parameters will be saved as a global workspace preset that could be used
with future exports. Currently only 10 presets are saved at a time.

173

Exporting and Running
on your Embedded Target

Exporting from the Command Line
It also possible to perform headless exports of the Storyboard Design files to the Storyboard Embedded
Engine files from a command line or scripting environment.

All of the Storyboard executables will be located in the PATH_TO_INSTALL/Storyboard_Design-
er/storyboard directories, though on each desktop platform they are named slightly differently

Windows:

..../Storyboard.exe -application com.crank.gdt.ui.gappexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 output=<PathToGAPPFile>

Mac:

..../Storyboard.app/Contents/MacOS/Storyboard -application
 com.crank.gdt.ui.gappexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 output=<PathToGAPPFile>

Linux:

..../Storyboard -application com.crank.gdt.ui.gappexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 output=<PathToGAPPFile>

Note: Storyboard requires a display, so to run in a true headless environment a Virtual frame buffer needs
to be setup.

Xvfb :1 -ac -screen 0 1024x768x8 export DISPLAY=:1
 /storyboard -application com.crank.gdt.ui.gappexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 output=<PathToGAPPFile>

Where the model is the path to the Storyboard Designer model file. In the situation where multiple GDE
model files are being joined together it is a comma separated list of model files where the first model file
will be used for the start screen and the remaining models will be used for additional content. The output
parameter specifies the filesystem path where the Storyboard Engine file will be created and the directory
containing that file will be used to for the additional resource directories (scripts, images and fonts).

If the gde file that is being selected for export does not reside in the workspace that is going to be used by
the comman line exporter, then the export configuration must be stored in the project. This is an option
that is availble when modifying the export configuration. The following picture illustrates the selection
that needs to be made:

174

Exporting and Running
on your Embedded Target

Note that the "Configuration Location" option is set to "Project". If the project resides in the same work-
space that the command line exporter will be using, the configuration can be stored in either the workspace
or the project

By default the exported gapp file will be compacted and not in a readable format. If a more readable format
is desired, then the readable parameter can be passed along the command line such as:

..../Storyboard -application com.crank.gdt.ui.gappexport
 readable
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 output=<PathToGAPPFile>

175

Exporting and Running
on your Embedded Target

Exporting from the Command Line using Ex-
port Configuration

It is also possible to perform a headless export using a pre-configured export configuration. After config-
uring the export in Designer a user can export this from the command line or scripting environment.

All of the Storyboard executables will be located in the PATH_TO_INSTALL/Storyboard_Design-
er/storyboard directories, though on each desktop platform they are named slightly differently

Windows:

..../Storyboard.exe -application com.crank.gdt.ui.configexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 configuration=<ConfigurationName>

Mac:

..../Storyboard.app/Contents/MacOS/Storyboard -application
 com.crank.gdt.ui.configexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 configuration=<ConfigurationName>

Linux:

..../Storyboard -application com.crank.gdt.ui.configexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 configuration=<ConfigurationName>

Note: Storyboard requires a display, so to run in a true headless environment a Virtual frame buffer needs
to be setup.

Xvfb :1 -ac -screen 0 1024x768x8 export DISPLAY=:1
 /storyboard -application com.crank.gdt.ui.configexport
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
 configuration=<ConfigurationName>

Where the model is the full path to the Storyboard Designer model file. This model file will be used to
search for a export configuration. The configuration parameter specifies the configuration name. If
this is provided then only the configuration with that name will be used in the export.

Additional Options
-data Is used to specify the workspace to be used when performing the export. This workspace should
not be opened by other instances of Storyboard. This is helpful when running the configexport option
in order for Storyboard to find your export configurations in your project. It is specified as follows:

..../Storyboard.exe -application com.crank.gdt.ui.configexport
 -data <PathToWorkspace>
 model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>

176

Exporting and Running
on your Embedded Target

 configuration=<ConfigurationName>

-consoleLog Is used to enable additional logging to the console.

-noExit Is used to prevent the application from closing automatically after performing the export. This
is sometimes useful to keep the log console open post-mortem.

Setting up Storyboard Engine
An engine execution environment is provided for each supported operating system, architecture and ren-
dering system. The target system should be configured with the Engine (sbengine) and plugins required
for the target application. All plugins are loaded via the SB_PLUGINS environment variable and all li-
braries are loaded via the LD_LIBRARY_PATH environment variable.

For example assuming a Storyboard Engine installation located at /home/crank/linux-imx6yoc-
to-armle-opengles_2.0-obj then you might configure the following environment variables:

export SB_PLUGINS=/home/crank/linux-imx6yocto-armle-opengles_2.0-obj/plugins
export LD_LIBRARY_PATH=/home/crank/linux-imx6yocto-armle-opengles_2.0-obj/lib

On Windows systems, there is no LD_LIBRARY_PATH so the PATH environment variable should be used
instead. Similarly on MacOS, DYLD_LIBRARY_PATH should be used instead of LD_LIBRARY_PATH

Font Environment Variable
The Storyboard Engine, when used with the FreeType font engine, has environment variables for font
options:

SB_FONT_HINT="normal" This corresponds to the default hinting algorithm, optimized for
standard gray-level rendering.

SB_FONT_HINT="light" A lighter hinting algorithm for non-monochrome modes. Many
generated glyphs are more fuzzy but better resemble its original
shape. A bit like rendering on Mac OS X.

SB_FONT_CACHE_SIZE=[size] This variable is used to set the size of the FreeType font face cache.
By default the cache is disabled and a value of 0 will disable the
cache. Any other number is the number of font faces to cache, using
this cache can decrease memory mappings of font files.

QNX Screen Environment
The QNX screen composited window system provides the ability for multiple applications to render
content to a display at the same time and to have that content merged together.

SB_SENSITIVITY=[0|1] By default (0), the screen composition manager does not deliver in-
put events to an application that has fully transparent pixel con-
tent. This corresponds to the default QNX screen input setting of
SCREEN_SENSITIVITY_TEST. Setting the SB_SENSITIVITY option
to 1 any touch input received on the applications display area will
be delivered to the application regardless of if the pixels were trans-
parent or not. This corresponds to the QNX screen input setting of
SCREEN_SENSITIVITY_ALWAYS.

177

Exporting and Running
on your Embedded Target

Running Storyboard Engine
The Storyboard Engine executable (sbengine) is located in the bin folder of the Storyboard Engine directory
structure. Now that the Storyboard Engine and Storyboard application (development bundle) are located
on the embedded target and the Environmental Variables have been set, the Storyboard Engine can run
a Storyboard application as follows:

sbengine thermostat.gapp

The Storyboard Engine is a self contained executable which loads plugins for added functionality. The
Engine can be run as follows:

sbengine [-i] [-v] [-o] [storyboard application]

Table 25.1. Options

OPTION DESCRIPTION

-i Displays which version of sbengine and related libs
are being used

-v Verbosity, more v's means more verbose output.

-o Plugin or manager options

Each plugin or manager defines its name and possible options.

As the verbosity level to Storyboard is increased, you will see more information about the execution of
the runtime engine.

Target Specific Configurations

Linux x86, armle

FBDEV

This build renders directly to the Linux framebuffer device (/dev/fb0). No other Graphical User Interface
should be running when Storyboard is started as it assumes control of the framebuffer device. This build
also uses the FreeType library for font loading and rendering.

Libraries:

• libfreetype.so

TSLIB

For the ARM version a plugin is available which supports a touchscreen device through the use of tslib
(libgre-plugin-tslib.so). This plugin will use the standard tslib environment variables in order to find and
configure the touch device as follows:

export TSLIB_CONSOLEDEVICE=none
export TSLIB_TSDEVICE=/dev/input/ts0
export TSLIB_CALIBFILE=/etc/pointercal
export TSLIB_CONFFILE=/etc/ts.conf

178

Exporting and Running
on your Embedded Target

It is assumed that the touch device has been configured previously. In order to configure the touch device
please run the ts_calibrate which is part of the tslib distribution or build for Linux systems.

Libraries:

• libts.so (only for tslib plugin)

Note

Storyboard requires a libts-0.0.so.0 to be in the lib path to use the tslib-plugin. If the board has
libts-1.0.so.0 simply create a symlink for libts-0.0.so.0 and point it at the libts-1.0.so.0.

ln -s /lib/libts-1.0.so.0 /lib/libts-0.0.so.0

MTDEV

Setting up muti-touch with Storyboard is relatively straight forward. In most cases you only need to pass
the multi-touch device to Storyboard using the following option:

sbengine -omtdev,device=[path to touch device] your_app.gapp

Determining the Touch Device

Typically the touch device is labelled as /dev/input/touch0. You can easily verify by using the
cat utility:

cat /dev/input/touch0

Executing the above command and touching the screen should present characters to the terminal verifying
you have the right device.

Input Bounds Parameters

Usually the sbengine mtdev plugin queries and receives the correct information from the touch device.
Sometimes, due to manufacturer's not following the correct specifications etc., the touch device does not
get initialized correctly and the touch coordinates are off. In that case you need to use the -omtdev,cal-
ibrate option in conjunction with the mtcalib application to acquire the bounds parameters for screen
calibration. To do that you will need to follow these steps:

1. Get the mtcalib sample from the Crank public SVN. Importing sample projects from Crank's public
SVN can be found here.

2. Run sbengine with the mtcalib sample:

sbengine -omtdev,calibrate mtcalib.gapp

3. Pass the bounds information that you acquired from the mtcalib application to your original sbengine
commandline:

sbengine -omtdev,device=/dev/input/touch0,bounds=0:0:32000:32000
your_app.gapp

Libraries:

• libmtdev.so

179

Exporting and Running
on your Embedded Target

SBIO

If your application uses the Storyboard IO library then the Linux kernel must have SysV message queue
support.

Microsoft WinCE, Compact7 win32, armle

Requirements:

Alpha blending must be compiled in to the target WinCE image

To utilize the -v verbosity options, a console must be compiled in to the target WinCE image

Use command line option to pass SB_PLUGINS directory since WinCE does not support environment
variables. E.g.: sbengine -omodel_mgr,plugin_path="/Temp"

liblua.dll must reside in the same directory as sbengine.exe, due to the lack of a PATH environment variable

Libraries:

• libgwes.dll Must be built into target WinCE image

Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle
Using the Yocto Jethro Linux kernel (3.14) with the boundary devices branch for the nitrogen6x you might
encounter flickering graphics.

Requirements:

echo 10 >/sys/devices/soc0/backlight_lvds0.17/backlight/backlight_lvds0.17/brightness

180

Chapter 26. Working with Storyboard
Lite Platforms
What is Storyboard Lite

Storyboard Lite is a feature reduced version of the Storyboard Engine. It is designed to fit on to platforms
that have smaller memory and storage offerings. Storyboard Designer can still be used to work with a
Storyboard Lite platform as the main engine is the same as the engine that runs on desktop machines.

Storyboard Lite Installers
Each platform that supports the Storyboard Lite configuration has an installer ascociated with it. For more
information on which installers are available, contact info@cranksoftware.com.

Design Considerations
One of the new features in Designer is the ability to choose a feature set to work with for the Designer
project. When creating a project for Storyboard Lite, users are encouraged to select the "Storyboard Lite"
feature set. This selction can be done on the third page of the "New Project" wizard. This will reduce
the number of actions that you can choose from in the "New Action" dialog. Some of the actions that
are removed are the Lua callback action and any of the advanced screen transition actions. These actions
have been removed due to the amount of memory that they can potentially use during execution. To add
dynamic capabilities to your application a new action called the "C Callback" action has been added. This
action allows the user to specify a C function to be called at runtime in response to an event. For simulation
purposes on desktop machines, the C callback plugin will invoke Lua functions from Lua scripts in the
project that have the same name as C function that is being called.

Another design consideration is to avoid the usage of rotated or scaled images. Rotating or scaling an
image will require more memory by the engine to draw the image at runtime.

Storyboard Designer now has a metrics view which can be used to estimate how much memory and storage
are required by an application. Also, there is a Resource Export Configuration editor that can be used
to control how resources are exported by designer. Using this editor it is possible to reduce the amount
of memory needed by fonts and images by drawing them directly from storage on the device. This will
however increase the amount of storage needed to store these resources.

181

Chapter 27. Working with Mobile
Platforms: Android and iOS

Exporting to iOS Devices
When exporting to an iOS Device all related files and available plugins are packaged into a single applica-
tion for the device. Since this is the case there is no need to set up environment variables or specify runtime
options on the target, since this will all be done in Storyboard Designer when you export the application.

To configure an iOS device to run your apps you need to set up a few things from Apple first:

1. Xcode

2. iOS developer account

3. A code signing certificate

4. The device ID of the Apple products you will be running on

5. The identifiers of the applications you will be making

6. A provisioning profile

Xcode
Xcode no longer includes the command line tools and need to be downloaded separately from the app store.

iOS Developer Account
To obtain a developer account you will need to go to https://developer.apple.com, click on iOS Dev Cen-
ter, then click register. After that follow their step by step instructions and you will be a registered iOS
Developer.

Code Signing Certificate
Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click Certificates in the left tab bar. If you do not have a
certificate, there will be an option to submit one. To do this you will need to make a Signing request. You
can do this by launching Keychain Access, located at /Applications/Utilities. Then go to Keychain Access
> Certificate Assistant > Request a Certificate From a Certificate Authority. Enter your email address and
your name, then select save to disk. Once that has been generated, go back into the certificates page of
your provisioning profile and submit it for approval. After the certificate gets approved, download the file
and open it, and it will be added to you keychain access.

Device IDs
Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click Devices in the left tab bar. Click the add devices button

182

Working with Mobile Plat-
forms: Android and iOS

at the top right of the page. Here you will need the device's name and Device ID. To get these connect the
device to your computer and find it in iTunes. With the device selected click on the device's serial number,
and it will switch to the Device's Identifier. Then click Edit > Copy Identifier (UDID). Now return to your
Provisioning Portal, paste the identifier and enter the name of the device.

Application IDs
Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand side
of the page. In your Provisioning Portal, click App IDs in the left tab bar. For this section we recommend
you set up a generic App ID and have it accept all of you applications. However if you wish to enable
other iOS like Push Notifications or In-App Purchase, you will need to make an ID for that individual
app. To create a generic App ID, click the Add New App ID Button. Now enter a description of the app
the Id will match with, e.g., "Application Development ID". Now enter the Bundle identifier. If this is
a generic App ID simply type "*". If this is for a specific app, enter the app's identifier. For example,
"com.cranksoftware.storyboardApp". Now click submit to go back to the previous page, find the App ID,
and configure all of the options that this specific application needs.

Provisioning Profile
Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click Provisioning in the left tab bar. Click the New Profile
button. Create a name for this profile. Select the certificates that will be used by this profile. Select the
App ID that will be used by this profile. Select the Devices that will be used by this profile. Once this is
completed, download the YourProvisionProfileName.mobileprovision file and save it to your computer.
When you are exporting your Storyboard application, you will need to tell Storyboard where this file is.

Adding Extra Libraries for iOS
Users can also add additional libraries that aren't included in the runtime to an exported iOS application.
Similar to Android, Storyboard needs to know about them beforehand so that we can pass them through
the code signing process. To do this, create a text file called user_libs.txt that contains any folder names
as strings that lead to added libraries that we need to check for signing. The folders should be placed at
the project root. This text file should also be placed in the root of the project. A valid setup looks like this:

Now that your libraries have been signed and are available for use, if you need to access them through Lua
you can do so using the helper variable gre.SCRIPT_ROOT. You can look at the generated .app file to
determine the script root relative path to your library folders, which will be located at the root of the .app
folder. That path needs to then be appended to the package.cpath variable in Lua using a semicolon. In
the above example, it would look like this:

183

Working with Mobile Plat-
forms: Android and iOS

Exporting to Android Devices
Exporting as an Android application will create an Android package that is suitable for use on Android
devices. The packages generated will only work on devices running Android version 2.3.3 and above.

To create an Android package, right-click the project .gde File > Storyboard Export > Export as Native
Android Application.

From the export file selection dialog, select the Storyboard application file (*.gde) that you want to export.
Choose appropriate names for the application name, Android package file name, and the package name.
Select the directory you want to export to and options for application orientation and fullscreen. For An-
droid devices version 4.4 and newer, the fullscreen option uses Android's sticky immersion fullscreen.

Note

Currently, without rooting an Android device, there is no way to disable the bottom bar for some
Android 3.0+ devices.

184

Working with Mobile Plat-
forms: Android and iOS

Select the Runtime tab to set Storyboard runtime options (see Storyboard Engine Options for list of avail-
able runtime options). Select the Manifest tab for advanced options to modify the default Permissions,
Manifest file or Keystore settings (optional). Select the Icons tab for selecting the icons for the application.
If you don't need to alter the settings, click Apply then Run to use the defaults.

By default the Android application package file (APK) will be created in the project's directory. To transfer
this application package to an Android device, simply copy the package onto a USB or SD card.

Adding Extra Libraries for Android

Sometimes a user creates a Storyboard app that requires a library that isn't included with the Storyboard
Runtime. When exporting for Android we need to tell the exporter which libraries to preload. We do this
by giving the exporter a text file with a list of libraries. Make sure that the paths to these libraries are
relative to the Storyboard app's directory. As well, the order of the libraries in the list determine the order
they get loaded in, therefore if one of the libraries has a dependency on another library make sure to have
the dependent library higher in the list.

The example we'll use is modifying the FilesystemExplorer app from the Crank Software public repository.
In order for this app to work on Android we'll need to include the LuaFileSystem module that's been
compiled for Android (the lib's name is lfs.so). We'll add this file in scripts/android-armle.

185

Working with Mobile Plat-
forms: Android and iOS

Create a text file, which we'll call user_libs.txt, with the following contents:

When exporting the app make sure to include the path to this file and hit finish.

Now the app can make use of the functionality included in the new library.

186

Working with Mobile Plat-
forms: Android and iOS

Storyboard Lua Android Integration
On Android target platforms Storyboard provides an additional level of platform integration. In order to
access the native Java service API on Android platforms Storyboard has incorporated the LuaJava [http://
www.keplerproject.org/luajava/] module to provide a bridge from Storyboard Lua script functions to the
Android Java API.

Access to the LuaJava bridge is through the luajava Lua variable. On non-Android platforms, this
variable will not be defined and this can be used to provide alternate or simulated behavior.

function my_callback(mapargs)
 if(luajava == nil) then
 print("LuaJava bridge not available")
 return
 end

 -- LuaJava available for use ...
end

The general mapping of standard Lua/Java types such as strings and numbers is handled transparently so
that Lua strings can be used in Java constructors and methods in the same way that the Java String class
would normally be used and similarly for Lua numbers and vice/versa.

When a Lua variable is created that is a reference or proxy to a Java object, then access to the meth-
ods of that object are performed using the colon (:) notation with the Lua variable, lua_vari-
able:method_name() notation. When accessing static member variables of an object, this can be
performed using the traditional dot (.) notation lua_variable.member_variable_name. This is
further demonstrated in the examples shown below.

In order to access a nested Java class for instantiation or binding, the dollar sign ($) must be used as a
separator. For instance, if the Java class Bar is a nested class of Foo, then binding would work as follows:
luajava.bindClass("Foo$Bar"). This is further demonstrated in the examples below.

A description of the complete Android Java API is beyond the scope of this document. For a complete
coverage of the Android API refer to http://developer.android.com/reference/packages.html Depending
on the functionality that your application is going to access, there may be additional restrictions that must
be explicitly declared in the AndroidManifest.xml file. Permissions can be added in the Advanced
Options section when exporting your Android project. The android:debuggable option has been changed to
false by default. To change this, you will need to use your own custom manifest file. Export your manifest
file to view it by clicking the Export button under the Manifest File tab. You can make changes to this
file and then select it as a custom manifest file when exporting to ensure the manifest file is setup the
way you want it to be.

Within the Android environment the Storyboard Engine execution takes place outside of the main An-
droid/Java event loop. When integrating with the Android API's developers should always consider that
they are using the Android API as if they were executing in a background thread and act accordingly. This
may require the creation of additional Looper message event handlers if callback event handlers are be-
ing used. For more information on Android process model and multi-threading considerations, refer to the
Android documentation: http://developer.android.com/guide/components/processes-and-threads.html.

Android Lua Java API

The mapping of Lua referenced objects to Android Java objects is relatively straightforward. All of the
API functionality is accessed via the luajava Lua global variable. This variable provides four functions

187

http://www.keplerproject.org/luajava/
http://www.keplerproject.org/luajava/
http://www.keplerproject.org/luajava/
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components/processes-and-threads.html

Working with Mobile Plat-
forms: Android and iOS

that can be used to access and manipulate standard Java objects and one variable that provides the Android
Activity that is required.

luajava.newInstance(className, ...) This function creates a new Java object based on the fully qualified
class name. Any additional parameters that are provided are passed
through to the standard Java constructor.

The return value is a Lua variable that is a proxy to the Java object
or nil if the class could not be instantiated.

-- Create an instance of a Java string tokenizer
local strTk = luajava.newInstance("java.util.
StringTokenizer","a,b,c,d", ",")
while strTk:hasMoreTokens() do
 print(strTk:nextToken())
end

-- Create a new Android Intent object (unpopulated)
local intent = luajava.newInstance
("android.content.Intent")

luajava.bindClass(className) This function creates a reference to a Java class based on a fully
qualified class name. This is different from newInstance() in
that a new Java object is not created and the constructor is not in-
voked, but simply a reference to the class is returned. Use this when
you need access to static fields or methods of a Java object.

The return value is a Lua variable that is a proxy to the Java Class
object specified or nil if the class could not be found.

-- Get the current system time
local sys = luajava.bindClass("java.lang.System")
print (sys:currentTimeMillis())

-- Parse a string into an Android Uri
local uriClass = luajava.bindClass("android.net.Uri")
local phoneURI = uriClass:parse("tel:6135951999")

luajava.new(classObject,) This function is similar to the newInstance() function but
rather than taking a fully qualified class name it takes an existing
Class reference, generally obtained from calling bindClass().
Additional parameters can be passed to the
Java constructor..

The return value is a Lua variable that is a proxy to the Java object
or nil if the class could not be instantiated.

-- Create a new string instance
str = luajava.bindClass("java.lang.String")
strInstance = luajava.new(str)

188

Working with Mobile Plat-
forms: Android and iOS

luajava.createProxy(interface-
Names, luaObject)

If a Java API requires an interface to be implemented or provided as
a set of callbacks, then it is where the createProxy() function
can be used. The interfaceNames parameter is a comma separated
list of fully qualified Java interfaces that will be implemented by the
Lua variable luaObject. The names of the interface methods must
be present in the luaObject variable.

The return value is a Lua variable that can be passed to any function
or method that requires an implementation of that interface. If the
creation of the proxy fails, then nil is returned.

-- Create a Lua variable with the same interface as an ActionListener
local button_cb = {}
function button_cb.actionPerformed(ev)
 -- I would do something interesting here ...
end

-- Map the Lua variable to the Java interface
buttonProxy = luajava.createProxy("java.awt.ActionListener", button_cb)

-- Use the newly created interface instance on a Java object
button = luajava.newInstance("java.awt.Button", "execute")
button:addActionListener(buttonProxy)

luajava.nativeActivity() All significant interaction on an Android system involves work-
ing with an Activity (see http://developer.android.com/refer-
ence/android/app/Activity.html) Storyboard applications that are
deployed to Android devices run as native activities which is a spe-
cial class of the general Activity that allows those applications to
interact directly with the graphics context and are generally C/C++
applications rather than pure Java applications.

The return value of this function is a Lua variable that is a proxy
for the NativeActivity Java class used by this application or nil if
the class could not be instantiated.

-- Start an activity specified by a previously created Intent object
local na = luajava.nativeActivity()
if(na ~= nil) then
 na:startActivity(intent)
else
 print("No Native Activity")
end

Storyboard Lua Android Example

This example demonstrates how a phone call could be invoked as part of a Lua callback. In or-
der for this example to work, the AndroidManifest.xml file must be changed to give permission for

189

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

Working with Mobile Plat-
forms: Android and iOS

calls to be made: %<uses-permission android:name="android.permission.CAL-
L_PHONE"></uses-permission>

 -- Log message routine to route diagnostic messages
local function lm(msg)
 print(msg)
end

-- Call a selected phone number using the Android API
-- Input is the string number value that is to be called
local function call_phone_number(number)
 if(luajava == nil) then
 lm("No luajava Lua object")
 return
 end

 local na = luajava.nativeActivity()
 if(na == nil) then
 lm("No native activity available")
 return
 end

 local uriClass = luajava.bindClass("android.net.Uri")
 if(uriClass == nil) then
 lm("No java.lang.String object")
 return
 end

 local phoneURI = uriClass:parse("tel:" .. tostring(number))
 if(phoneURI == nil) then
 lm("No java.net.URI object")
 return
 end

 local intentClass = luajava.bindClass("android.content.Intent")
 if(intentClass == nil) then
 lm("No intent class")
 return
 end

 local intent = luajava.newInstance("android.content.Intent",
 intentClass.ACTION_CALL, phoneURI)
 if(intent == nil) then
 lm("No intent object")
 return
 end

 lm("Calling " .. number)
 na:startActivity(intent)
end

190

Working with Mobile Plat-
forms: Android and iOS

This example demonstrates how to create a new instance of a nested inner class of a Java class. This exam-
ple gets media metadata from the android.provider.MediaStore.Audio.Media class, which is a nested class
of android.provider.MediaStore.Audio, which in turn is a nested class of android.provider.MediaStore.

-- In order to pass array's to any of the Android Java API's we must explicitly create
-- a Java array from a Lua table and this function covers that work.
function make_array(dataClass, values)
 local arrayClass = luajava.bindClass("java.lang.reflect.Array")
 if(arrayClass == nil) then
 print("Can't get array class")
 return nil
 end

 local newTypedArray = arrayClass:newInstance(dataClass, #values)
 if(newTypedArray == nil) then
 print("Can't get array class")
 return nil
 end

 for i=1,#values do
 arrayClass:set(newTypedArray, i-1, values[i])
 end

 return newTypedArray
end

function get_album_files(album_id)
 if (luajava == nil) then
 return
 end

 if (luajava.bindClass == nil) then
 return
 end
 local na = luajava.nativeActivity()

 local mediastore = luajava.newInstance("android.provider.
 MediaStore$Audio$Media")
 local externalURI = mediastore.EXTERNAL_CONTENT_URI
 local columns = {}
 columns[1] = mediastore.TITLE_KEY
 columns[2] = mediastore.DURATION
 columns[3] = mediastore.TITLE

 local stringClass = luajava.bindClass("java.lang.String")
 local array = make_array(stringClass, columns)
 local where = mediastore.ALBUM_KEY .. "=?"
 local what = {}
 what[1] = album_id
 local whatArray = make_array(stringClass, what)

 local cursor = na:managedQuery(externalURI, array, where, whatArray, nil);
 local res = cursor_to_table(cursor)

191

Working with Mobile Plat-
forms: Android and iOS

 return res
end

192

Chapter 28. Sending and Receiving
Data with Storyboard IO

The Storyboard IO API, formerly known as GREIO, provides a platform independent communication API
that allows inter-task, inter-process and ip-network queued message passing. This is primarily used to
allow external communication with a Storyboard application.

The API provides transport delivery guarantees for messages that are placed into the queue regardless of
the implementation. The maximum transport size of a message and the total queue capacity varies slightly
from implementation to implementation however a 2K message size should be considered a design limit
with the practical implementation limit around a 4K message payload size.

Storyboard IO communicates events over a named uni-directional channel. By default, Storyboard appli-
cations have a receive channel, named after the deployment bundle file (i.e. [bundlename].gapp). This
allows backend applications to send events to the Storyboard Application. A custom receive channel or
tcp port number can be specified in the command option for sbengine. The Storyboard application can
transmit events on one or more channels or tcp ip address ports. The backend software will need to open
the channel and listen for events. See Storyboard IO API for more details.

Storyboard IO integration with the Storyboard Engine is implemented as a plugin. It is possible to create
alternate Storyboard IO implementations that take advantage of custom communication facilities available
on a platform. Additionally Storyboard IO has been extended to provide abstraction of tcp ip ports in the
place of channels.

The Storyboard IO plugin provides a single communication channel which clients can use to inject events
into the Storyboard application. These events will be queued and dispatched in the same manner as inter-
nally generated events.

Client applications can use Storyboard IO to create their own communication channels and then receive
events from that channel from the Storyboard application or from any other Storyboard IO client.

Storyboard IO Transport protocols
The Storyboard IO API layers are implemented on top of native message passing and communication
APIs. In addition to host operating system's TCP protocol support, the following protocols, dependent on
the operating system, are supported:

Linux SysV message queue

MacOS SysV message queue

QNX QNX POSIX message queue (mqueue server or mq server/library)

Using the SBIO_MQ_PATH environment variable you can deter-
mine which message queue technology will be used. By default the
standard mqueue server and corresponding C library mq_* func-
tions will be used.

If the SBIO_MQ_PATH environment variable is set to point at
the libmq.so library (i.e. SBIO_MQ_PATH=/usr/lib/lib-
mq.so) then the default binding for the message queue implemen-
tation can be changed to use the mq server and the corresponding
mq library functions.

193

Sending and Receiving
Data with Storyboard IO

If the SBIO_MQ_PATH environment variable is used, then it must
be used consistently with all Storyboard IO clients and servers that
want to communicate with one another.

WinCE/WinCompact7 WinCE MSMQ

Win32 MS-Mailslots

RTOS (FreeRTOS, MQX,
ThreadX, etc)

In memory queue

Connecting to a Storyboard Application
In order to communicate with a running Storyboard application the external application must first attach
to the application's Storyboard IO channel. By default this channel is named after the deployment bun-
dle file (i.e. [bundlename].gapp), however the name of this channel can be customized by specifying -
ogreio,channel=newname as an option to sbengine. Alternatively, on some platforms, it is also
possible to set a GREIONAME environment variable to the channel name.

Once the channel name is determined, the connection to the channel can be established with the
gre_io_open() function. This will connect to the channel and return a handle that can be used for
future communication.

Once the application has determined that no further communication is necessary the channel should be
closed via the gre_io_close() function. The gre_io_close should be called in a manner that is
serialized with clients using the handle returned from gre_io_open. For threaded applications where a
receive thread is running independently, it is always a good idea to shut down and close the channel from
within the thread that is receive blocked on the channel by sending it a specific termination message.

Storyboard IO Over TCP
It is possible to send events over TCP as long as the greio-tcp library is available on your system. In order
to completely disable TCP functionality from Storyboard Engine, you may remove the greio-tcp library
from your device all together.

A TCP connection is specified by the format of the Storyboard IO channel name.

Receiving:

tcp://<port or channel>

Sending:

tcp://<IP address>:<port or channel>

The default IP address is 127.0.0.1 (localhost). The default port is 50000.

If using a port number, the valid range is 49152..65535. If a text channel name is used, Storyboard IO will
hash the string into a port value within the valid range of 49152..65535.

The following are examples of valid GREIO TCP channel names.

Receiving:

• tcp:// (Will use default port of 50000)

194

Sending and Receiving
Data with Storyboard IO

• tcp://55555

• tcp://my_channel

Sending:

• tcp:// (IP 127.0.0.1 and port 50000)

• tcp://55555 (IP 127.0.0.1)

• tcp://my_channel (IP 127.0.0.1)

• tcp://192.168.1.101:51515

• tcp://192.168.1.101:my_channel

• tcp://dev-machine101:my_channel

As shown above, if the network is configured to assign host names to machines on the network, these can
be used in place of IPv4 addresses, provided that the machine has DNS capabilities.

Sending Events to a Storyboard Application
Storyboard events contain string based names and a variable data field. For this reason the event data must
be serialized into a buffer for communication. The Storyboard IO API provides the functions needed to
both serialize your data and send the event. The event you wish to send must first be serialized via a call
to gre_io_serialize(). This will allocate a serialized data buffer for your event. The event can
then be sent via the gre_io_send() function. Once the event has been sent the buffer can be reused
or freed via a call to gre_io_free_buffer().

Note

Serialized buffers can be reused multiple times. The gre_io_serialize_buffer() func-
tion will resize or reallocate the buffer if the data being serialized is larger than the existing buffer.
This is designed to cut down on repetitive memory allocation and deallocation churn.

Data parameters must be sent in order of descending alignment requirements. Example: 4u1 4u1
2u1 1s0 is good, 2u1 4u1 4u1 1s0 is not

gre_io_t *send_handle;
gre_io_serialized_data_t *nbuffer = NULL;
const char *event_data = "my event data"

/*
 * Connect to a channel to send messages.
 */
send_handle = gre_io_open("my_channel", GRE_IO_TYPE_WRONLY);
if(send_handle == NULL) {
 printf("Can't open send handle [%s]\n", argv[1]);
 return 0;
}

/*
 * Alternatively to the above 'gre_io_open() example,

195

Sending and Receiving
Data with Storyboard IO

 * Connect to a tcp ip address port to send messages.
 */
send_handle = gre_io_open("tcp://192.168.1.101:my_channel", GRE_IO_TYPE_WRONLY);
if(send_handle == NULL) {
 printf("Can't open send handle [%s]\n", argv[1]);
 return 0;
}

/*
 * Send a named event containing no data payload
 */
nbuffer = gre_io_serialize(nbuffer, NULL,
 "my_event_name",
 NULL,
 NULL,
 0);

gre_io_send(send_handle, nbuffer);

/*
 * Send a named event with an additional string payload
 */
nbuffer = gre_io_serialize(nbuffer, NULL,
 "my_event_name",
 "1s0 data",
 event_data,
 strlen(event_data)+1);

gre_io_send(send_handle, nbuffer);

Event Naming Conventions
New events can be readily defined and are not required to contain a data payload. In this case their format
string and data payload will be empty values. When creating new events, it is appropriate to namespace
the event definitions so that the names of events do not collide. For example, the Storyboard framework
reserves the name prefix of gre. for user interface events, and the timer functions all generate events
that are prefixed with timer.

The use of events is closely coupled with the declaration and operation of actions. An action can only
be invoked when an event matching the action definition is received. This results in a common design
pattern where an action will perform sophisticated logic in an external script or program and then signal
a completion action to run once the script work is complete.

Event >Action (script) >Work >Trigger Event >Action (completion)

Serialized Data and the Event Format String
Any data associated with an event as its payload must be a linearly contiguous block of memory. In order
for clients receiving the event to decode the event data memory block back into structured content a key
must be provided. The format string that is provided as part of the event is this decoding key.

The format string describes how the individual bytes of event data are to be grouped together as specific
data types. For example the Lua script plugin can use the format string to convert the event data memory

196

Sending and Receiving
Data with Storyboard IO

block into Lua variables that conform to Lua's type system. Once converted, the symbolic name for the
data, provided as part of the format string, can be used to reference that particular information. Other
clients, such as C or C++ programs, may not need to interpret the data symbolically but may use a language
specific mechanism to convert the memory block.

The format string is relatively straightforward to create and is a series of entries formatted as [num-
bytes][signed/unsigned][numelements][][name]. For the standard C data types the
number formatting would look like:

C/C++ Type Format String Data Size

int8_t 1s1 1 byte

uint8_t 1u1 1 byte

int16_t 2s1 2 bytes

uint16_t 2u1 2 bytes

int32_t 4s1 4 bytes

uint32_t 4u1 4 bytes

int64_t 8s1 8 bytes

uint64_t 8u1 8 bytes

float (IEEE754 float) 4f1 4 bytes

char * 1s0 Length of string including nul ter-
minator

So, if you were transmitting the following C/C++ structure you would presume that the bytewise memory
layout would be:

You would use a format string of 4s1 a 2u1 b to describe the event.

The symbolic field descriptions a and b are optional but highly recommended. They are used to give the
data symbolic representation for clients that can't access the memory bytes directly (such as Lua). These
symbolic field descriptions do not need to match the names of the structure member variables so an equally
valid format string for the above structure might have been 4s1 angle 2u1 magnitude if angle
and magnitude were better symbolic names for what the data represents.

The format string provided describes the linear memory layout of the event data. Consequently it is im-
portant that the format string take into consideration any alignment or padding inserted when the memory
block is created. Consider changing the order of the members in the sample structure:

197

Sending and Receiving
Data with Storyboard IO

without any additional guidance to tell it otherwise the C/C++ compiler is going to create storage for the
structure such that members are aligned to boundaries that match their data types (ie 4 byte types are
aligned on 4 byte boundaries). This can create holes in the memory layout.

Here the 32 bit/4 byte member of the structure a comes after b but there are two additional bytes of padding
inserted to ensure a starts on a 4 byte memory boundary. Since the format string must describe the linear
memory layout for clients, we would have to change the format string to accomodate the extra padding
inserted for alignment and the format string would be 2u1 b 2u1 pad 4s1 a. It is always good
practice to avoid wasting extra bytes on padding alignment, but Storyboard does not perform any sort of
interpretation. In fact providing a format string that mis-aligns data can result in unpredictable behaviour.

Event data frequently will contain string information. Strings are simply an array of one byte values with a
nul terminating character, often represented as a pointer to this memory (i.echar *). All text in Storyboard
is encoded using UTF-8 so this statement applies regardless of the text values being represented. If an
event's data payload is composed of a single string, then the bytes of that string can be used directly as
the block of memory:

char * event_data = "Crank";

The event_data variable, as a pointer to memory, can be used directly and the format string used to
represent it would be 1s0 msg, where msg can be whatever symbolic name makes sense.

It is not possible to send C/C++ structures that contain strings as members if those variables are declared
as pointers because the memory of the structure (including the string) is not linear and the event data must
be a linearly contiguous block of memory.

However it is possible to include strings within structures by either fixing their size which will force their
storage to be included as part of a structure block, i.e char msg[20], or if only a single string is
being sent then the C/C++ idom of overallocating the size of a structure can be used to force a linear
memory layout:

The C/C++ code technique for using this would look something like:

struct event_data {
 int a; //Assume 32 bit integers
 char b[1];

198

Sending and Receiving
Data with Storyboard IO

};

struct event_data *ed;

//Allocate the memory for the base structure and the string to follow it
ed = malloc(sizeof(*ed) + strlen("Crank"));

//Assign the values to the allocated structure
ed->a = 2018;
strcpy(ed->b, "Crank"); //nul character is accounted for by b[1]

In this case the data can now be described with the format string 4s1 a 1s0 b where the 1s0 is
shorthand for nul terminated strings and would be equivalent to saying 1s6 where 6 is the number of bytes
in the string "Crank" plus the nul terminating character.

Setting Application Data
The Storyboard IO plugin provides the capability to set application variable values using the Storyboard
IO API, allowing external client programs to change data dynamically.

Clients can use the gre_io_add_mdata() function to serialize each variable value that is to be set. As
values are added to the serialized buffer, it will be grown until it reaches a maximum size for the transport,
at which point the gre_io_add_mdata() function will return -1 indicating it is full. The data can be
then sent by using the gre_io_send_mdata() function which will send the change request to the
Storyboard IO plugin and set the appropriate values in the Storyboard application.

Note

Data must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0 is
good, 2u1 4u1 4u1 1s0 is not

gre_io_t *send_handle;
gre_io_serialized_data_t *md_buffer = NULL;
uint32_t x;
char *ptr;
int ret;

/*
 * Connect to the application channel
 */
send_handle = gre_io_open("my_channel", GRE_IO_TYPE_WRONLY);
if(send_handle == NULL) {
 printf("Can't open send handle [%s]\n", argv[1]);
 return 0;
}

/*
 * Add some values to be set in the data manager
 */
ptr = "my string";
ret = gre_io_add_mdata(&md_buffer,
 "Test.String",

199

Sending and Receiving
Data with Storyboard IO

 "1s0",
 ptr, strlen(ptr)+1);

x = 1;
ret = gre_io_add_mdata(&md_buffer,
 "Test.Number",
 "4u1",
 &x, sizeof(uint32_t));

/*
 * Send the data to be set in the application.
 */
gre_io_send_mdata(send_handle, md_buffer);

Receiving Events from a Storyboard Applica-
tion

In order to receive events the from a Storyboard application, a client program must first create a receive
communication channel using the gre_io_open() function. This function takes the name of a chan-
nel to create and the mode in which to open the channel, for reading or writing. Receiving clients must
open it for reading. To receive events from a tcp socket, gre_io_open() needs to specify a tcp URI
and optional channel name / port number. To specify the use of a tcp port, a tcp uri "tcp://" needs
to prefix the optional Storyboard IO channel name when openning the read only channel. For example:
gre_io_open("tcp://my_channel", GRE_IO_TYPE_RDONLY) Internally a channel name
string is hashed into a tcp port number. The tcp sender should be configured with same channel name or
port number.

Once the communication channel is created, then the client program then must call gre_io_receive()
in order to receive and process events.

The client communication channel can be created in either a blocking or non-blocking mode. By default
the gre_io_receive() function will not return unless there is an event available or an error has oc-
curred.

Once an event has been received the data can be unserialized into its standard components using the
gre_io_unserialze() function.

char *name = (char *)arg;
gre_io_t *rhandle;
gre_io_serialized_data_t *buffer = NULL;
int ret;
char *revent_name;
char *revent_target;
char *revent_format;
uint8_t *revent_data;
int offset, i, rnbytes;

rhandle = gre_io_open(name, GRE_IO_TYPE_RDONLY);
if(rhandle == NULL) {
 printf("Can't open IO channel %s\n", name);

200

Sending and Receiving
Data with Storyboard IO

 return 0;
}

printf("Waiting on channel [%s]\n", name);
while(1) {
 ret = gre_io_receive(rhandle, &buffer);
 if(ret < 0) {
 printf("Problem receiving data on channel [%s]\n", name);
 break;
 }

 rnbytes = gre_io_unserialize(buffer,
 &revent_target,
 &revent_name,
 &revent_format,
 (void **)&revent_data);
 printf("Event Received [%s] on channel [%s]:\n", revent_name, name);
 printf(" Event Target: [%s]\n", revent_target);
 printf(" Event Format: [%s]\n", revent_format);
 printf(" Event Data (%d bytes):\n", rnbytes);
}

gre_io_close(rhandle);

Debugging Storyboard IO

Debugging egress (Storyboard Engine sending to back-
end)

Table 28.1. No events are being received

Possible Issue Resolution

Receive channel is not open Launch Storyboard engine with verbosity (-v) and
you see the following warning on sending an event
WARN [0.135]:Can't open greio chan-
nel channel_name , then the channel is not
open. If receiver is in C code ensure the gre_io_open
returned successfully. If communicating with an-
other Storyboard application ensure the receiving
application was launched with the expected chan-
nel name specified with command line parameter -
ogreio,channel=channel_name

Channel name mismatch If there is a mismatch on channel name you will not
receive messages. One way to verify is to stop the
receiver and use utility iorcv. Just launch iorcv with
the same channel name as your receiver: ./iorcv
[-s] channel_name

System Permissions On some systems, system permissions can block the
IO communications. Try running with administrator
privileges, if the above steps have not resolved the

201

Sending and Receiving
Data with Storyboard IO

Possible Issue Resolution

issue. You can use iogen and iorcv to verify permis-
sions.

Table 28.2. A particular event is not being received

Possible Issue Resolution

event not sent Launch Storyboard Engine with verbosity level 4 (-
vvvv). Verify in the log that the action or Lua code
to trigger the event was executed. If you see WARN
[0.135]:Can't open greio channel
and you have already verified channel is open, then
verify the channel name is correct in send event call

Event not received Most common scenario is a event name mismatch.
Using iorcv you can verify the name that is being
sent, ensure it matches what the receiver expects.

Table 28.3. Event data not correct

Possible Issue Resolution

Format string not correct If the data values are not received as expected it like-
ly the format string either does not match the data.
Ensure the format size matches the size of the da-
ta. If specifying a name to the parameter ensure the
names are the same.

Data not aligned. Data must be aligned to system data alignment. Par-
ticular problem sizes are 1u1, 1s1, 1s0 (strings). Da-
ta must be sent in order of descending alignment re-
quirements. Example: 4u1 4u1 2u1 1s0 is good, 2u1
4u1 4u1 1s0 is not

Debugging ingress (Storyboard Engine receiving from
backend)

Table 28.4. The trouble shooting steps for egress Storyboard apply in this scenario,
so see the above steps.

Issue Resolution

Event not received Launch Storyboard Engine with verbosity lev-
el 4 (-vvvv) you will see the follow-
ing event trace if successful. EVENT
[111.811]:GREIO received event
[MilleniumFalconSpeed] 2 bytes
EVENT [111.811]:IO: Queue
[1] MilleniumFalconSpeed EVENT
[111.811]:IO: Dispatch [Millenium-
FalconSpeed] ACTION [111.811]:AC-
TION: Invoke [MilleniumFal-
conSpeed]->[gra.lua] on app [app] If

202

Sending and Receiving
Data with Storyboard IO

Issue Resolution

the last two messages are not displayed Storyboard
received the event but could not find a handler for
the event.

Storyboard IO Utilities
Included with Storyboard are some command line utilities that can be useful tools when working with and
configuring Storyboard IO. These utilities provide a thin layer on top of the Storyboard IO C API and can
be used to verify that Storyboard IO is working properly on your platform.

iogen
The iogen utility is used to generate Storyboard IO events from the command line. The utility's com-
mand line arguments closely mirror the arguments that would be provided to the gre_io_open and
gre_io_send Storyboard IO API functions. Running iogen without any parameters will show a usage
message:

Note

Data must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0 is
good, 2u1 4u1 4u1 1s0 is not

Usage:

./iogen channel_name [event_target event_name size data [size data]...]

For example:

Send a 'gre.quit' event to a client on channel 'sb'

./iogen sb no_target gre.quit

Send a 'gre.press' event (int button, timestamp, subtype, x, y, z, id, spare) @ 100,150 to a client on channel
'sb'

./iogen sb some_target gre.press 4u1:button 0 4u1:timestamp 0 2u1:sub-
type 0 2s1:x 100 2s1:y 150 2s1:z 0 2s1:id 0 2s1:spare 0

Send a 'progress' event with an integer field 'percent' containing the value 50 on a channel 'sb'

./iogen sb no_target progress 4s1:percent 50

Send a 'greio.vebosity' event with an integer field 'verbosity' containing the desired level of engine debug-
ging verbosity

./iogen sb no_target greio.verbosity 4s1:verbosity 4

Send a 'cluster_update' event with array data named 'tire_pressures' of 30,45,17,25 on channel 'sb' Note
the leading ',' in the data, this is needed to differentiate small number from characters in a string. This can
be omitted when sending numbers in anything other than the 1sN format.

./iogen sb no_target cluster_update 1s4:tire_pressures ,30,45,17,25

203

Sending and Receiving
Data with Storyboard IO

Note

In this case the raw data representation of these numbers will be delivered as a string in the event
payload. Use the string.byte function in Lua to decode the data into numerical format.

The iogen utility can also be used to set variables in a Storyboard application. To set a variable, the
event_target parameter should contain the fully qualified path for the Storyboard variable and the
event_name parameter should contain the SBIO event greio.iodata_set. For example:

Set an integer application variable 'progress' with a number (50)

./iogen sb progress greio.iodata_set 4s1 50

Set the text variable 'myvariable' on the control 'mycontrol' on the layer 'mylayer' with a string (Hello)

./iogen sb mylayer.mycontrol.myvariable greio.iodata_set 1s0 "Hello"

The definition and format of standard Storyboard events such as gre.press and gre.release can
be found in the Storyboard header file iodefs.h.

iorcv
The iorvc utility is used to receive Storyboard IO events. This utility takes an input channel name as
a command line parameter and prints the events it receives. Running iogen without any parameters
provides a usage message:

Usage:

./iorcv [-s] channel_name

By default, iorcv will loop around receiving messages until the program is terminated. By specifying -
s you can cause iorcv to exit once it has received a single message.

When a message is received, a summary of the event contents is printed to the output:

./iorcv my_channel

Waiting on channel [my_channel]

Event Received [my_event_name] on channel [my_channel]:

Event Target: [no_target]

Event Format: []

Event Data (0 bytes):

This would be the response to an event generated by iogen with the following arguments:

./iogen my_channel no_target my_event_name

Connecting to Storyboard IO channel [my_channel]

204

Chapter 29. Optimizing Your
Storyboard Application
Measuring Performance

Using the Storyboard logger plugin it is possible to capture metrics detailing various aspects of a Story-
board applications performance. These metrics include screen, layer and control redraw times, action exe-
cution times and general event processing times. If a performance log file is captured as and saved with the
file extension .plog (for performance log) then Storyboard Designer will automatically recognize it and
open up a log file viewer that provides an organized display and base analysis of the performance events.

For more information on options to configure and control the performance monitoring of the engine, refer
to the Logger plugin section of this document and the gra.perf_state action.

The Storyboard Embedded Engine runtime also provides a number of API functions that can be used at
runtime to extract and display performance information.

grd_fps (string, 1s0) The frame rate of display updates averaged over the last 5 seconds
of display. This variable is only created and filled in if the -os-
creen_mgr,fps option is passed to the Storyboard Engine.

Storyboard display updates are entirely event driven, so unless the
application that is being run is continuously changing content or
generating redraw events such as is frequently done by benchmark-
ing applications, this value may not reflect the true drawing perfor-
mance of the system.

gre.env("mem_stats") (Lua) On systems where this information is available this returns the
amount of process and heap memory that the Storyboard Engine is
using.

collectgarbage("collect") (Lua) This is a Lua API call and will identify how much memory the
Lua script interpreter is consuming. This will be a subset of the
information returned by gre.env().

This sample demonstrates how a periodic Lua script can be used to extract the local FPS The FPS value
is stored as a string variable and may not exist until enough frames of data have been generated to derive
a value.

-- Take a snapshot of the current execution metrics
function snapshot_metrics()
 local fps = gre.get_value("grd_fps") or 0
 local mem = gre.env("mem_stats")
 local lua_mem = collectgarbage("count")

 --Normalize, not all systems have all data
 if(fps ~= nil) then
 print(string.format("FPS : %d", tonumber(fps)))
 end
 if(mem.process_used) then
 print(string.format("MEM : %d", mem.process_used))

205

Optimizing Your Sto-
ryboard Application

 end
 if(mem.heap_used) then
 print(string.format(" HEAP: %d", mem.heap_used))
 end
 print(string.format(" LUA : %d", lua_mem))
end

-- Set up a periodic timer to snapshot execution metrics every 1s
function init_metric_snapshot(mapargs)
 gre.timer_set_interval(snapshot_metrics, 1000)
end

Action Execution Performance Considerations
All actions are executed within the context of an event delivery and as such their execution will have
an impact on the overall throughput and responsiveness of the system. In particular with Lua scripts, it
is important to limit the length of time that functions take to perform their work or to separate lengthy
operations into separate tasks, threads or processes depending on the operating environment being used.
The performance logs will provide a detailed account of how long various actions take to execute, but
within your Lua scripts a profiling tool such as Lua Profile [http://lua-users.org/wiki/ProfilingLuaCode]
can provide additional insight into your script execution.

The screen manager listens for data changes and checks the state of controls to determine when the display
needs to be refreshed. In general practice the screen manager throttles data updates in a way that batches
changes together to prevent visual flicker and excessive update of the display (in particular in situations
where the display is not double buffered). However, there may be sequences of events or data changes that
do not occur atomically and may result in excessive work to be performed and consume un-necessary CPU
cycles. In these situations when multiple events are going to be changing data values, moving controls, or
generating more events which would cause the display to be updated, and they are known to occur in a
particular sequence, it is advisable to hold the screen manager updates until all changes have been made.
 Once modifications are complete the screen manager can be released and the display updated is needed.
The actions are as follows:

1. gra.screen.hold

2. gra.screen.release

Choosing the Right Image Format(s) Bit Depth
When creating an application the developer must define the target system screen resolution and color depth.
 This color depth information is used internally to decide how to create and render display elements in an
efficient manner. When adding images to the user interface it is always preferable to create them in the
desired color depth. If the application will be running in 16bit color then the most efficient image to render
will be a 16bit image. If alpha blending/transparency is not required when this image is rendered then it is
advisable to create images in the application color depth or at least remove the alpha channel in the image.

Framerate (Frames Per Second)
Selecting an appropriate framerate for your screen transitions and animations will depend on your target
system. You may think that selecting a higher framerate will make your animations run smoother, however,
if your system can't keep pace with the selected framerate, Storyboard Engine will drop the frames it can't

206

http://lua-users.org/wiki/ProfilingLuaCode
http://lua-users.org/wiki/ProfilingLuaCode

Optimizing Your Sto-
ryboard Application

display in a timely manner. This will result in the engine having to do more work to achieve a lower
framerate than intended and will look worse than originally setting a lower framerate that the target could
handle.

A framerate of 14 frames per second will look good for the majority of simple animations. The results may
vary, though, depending on what is being animated, how long it is being animated for, and what the content
beneath the animated element is composed of. The best plan is to evaluate your design and animations on
your target hardware, and tune your settings appropriately.

Scaling Images
If you are only ever going to load an image once in you application don't scale the image, this is a perfor-
mance hit at image render time. It's far better to use you favorite image editor and resize the image to exact
size you intend to use it and turn the scale flag off.

Reducing Output Verbosity
Increasing the verbosity on sbengine is insightful when trying to track down behavioral issues and
to gain a better understanding of the system behavior. However, don't forget to turn off the verbosity
for release since the process of outputting diagnostic messages to a console or serial terminal can cause
significant slowdown due to the limited bandwidth of the output devices.

Adjusting Engine Rendering Options
The Storyboard Engine provides a number of different global rendering defaults that can be adjusted via
command line options at execution time.

If your application contains a number of rotated images, then the -orender_mgr,quality option can
be used to trade between higher execution performance (0) and a better visual interpolation (2)

If your application is using an OpenGL renderer, then the -orender_mgr,multisample option can
be adjusted to favour less GPU consumption with less anti-aliasing (0) or choose a smoother visual pre-
sentation but longer to render (4 or more).

Managing Resource Memory
By default sbengine uses as much memory as it requires to load all the assets that the application requires
(images, fonts, scripts,...) but this can be tuned to save memory. Here are some options to help with this.

• Remove any unused plugins from the plugins directory if you are simply setting a directory for the
SB_PLUGINS environment variable. The plugins that are available and being loaded will be shown by
passing the -i option to the sbengine command line utility.

• Set the resource_mgr options for image and font cache to appropriate values. Remember the caches
must be large enough to fit all the images and fonts for your most resource intensive screen.

• Use the Load Scaled flag in image render extension options if you are loading a scaled version of an
image (e.g., an image thumbnails screen). If you are only ever loading the image once you should resize
the image before deployment to avoid the runtime cost of image scaling.

207

Optimizing Your Sto-
ryboard Application

OpenGL Scene Graph Optimization
The new OpenGL scene graph introduced in Storyboard 6.0 turns the old synchronous immediate mode
OpenGL render manager into an asynchronous deferred OpenGL renderer. The new rendering paradigm
allows the Engine to re-sequence, sort and combine GL calls in ways that are more efficient for both the
CPU and GPU. For example, with the ability to sort, the depth buffer can be leveraged for all rendering
elements on the current screen, which when combined with separate opque and alpha operation ordering
allows the engine to use hardware accelerated depth testing to greatly reduced overdraw on the GPU. This
is functionality that should improve an application's performance without any change to the application
itself.

The OpenGL scene graph also adds support for batching for some common elements and state transitions.
This allows for previously separate elements with each their own expensive GL draw calls to be combined
together based. This has the effect of greatly reduced the overall number of GL draw calls in particular.
Currently fills can be batched, along with glyphs and images for which we leverage our image atlas, that
allows us to access multiple images or glyphs from a single texture.

To maximize the benefit of batching, an application design should try to keep as many common classes of
rendering elements together within the Z-order of the design to help improve the probability that they will
be batched together. For example try to avoid a scenario where controls with single render extensions are
organized (in a stacked Z order) as image, fill, image, fill a more ideal scenario would be (where possible):
image, image, fill, fill.

In order to offer some additional configurability for design scenarios where the new rendering optimiza-
tions are not aligned with the application design, it is possible to control the batching and sorting behaviour
with the engine options -orender_mgr,no_batch or -orender_mgr,no_z_sort.

The other configuration option that can play a significant role in rendering performance are the resource
manager options that control the size of the font and image cache. The size of this cache plays a signif-
icant role in how much content can be batched together for draw operations. The -oresource_mgr,im-
age_block_size={-1|0|X} and -oresource_mgr,font_block_size={-1|0|X} options can be use to configure
the size and behaviour of the caches generally the larger the block sizes, the great chance things will be
batched with a large potential gain on performance at the cost of a potential increase memory usage.

208

Chapter 30. Extending Storyboard
Functionality

Storyboard, in its default configuration, provides enough standard functionality to satisfy most application
development requirements. When additional functionality is required, there are several ways in which
users can choose to extend the behavior of both Storyboard Designer and Engine.

• Custom Lua modules provide a way to integrate access to existing C/C++ libraries. The Lua extension
interface is a well documented and standard way to add new functionality to the Lua scripting envi-
ronment. Storyboard includes a sample demonstrating how this integration occurs in the Lua Custom
Module sample. If event based communication using Storyboard IO is not suitable for the application,
then this is a preferred route for accessing external data required by the user interface.

• The Storyboard SDK is an additional product that compliments the base Storyboard with the necessary
API documentation and samples that allow users to create their own Storyboard Engine plugins. Sto-
ryboard plugins can be used to contribute new event sources, actions or render extensions. Using the
Storyboard SDK one can also interact directly with the Engine's logging, performance metrics and data
manager to perform various introspection activities at runtime.

User Defined Action Templates
When the Storyboard SDK is used to contribute new actions, it is desirable to have those actions avail-
able within the Storyboard Designer environment so that application designers can invoke the actions and
configure their properties. To do this, an action template file describing the name and properties of the
action can be created.

Action template files are added to individual projects and should be placed in the templates directory
of the project and should use the file extension sbat (Storyboard Action Template)

The format of an action template file (sbat) file is as follows:

<actiontemplates>
 <template name="NAME">
 <arguments>
 <element name="ARG_NAME" type="ARG_TYPE" />
 ... as many elements as there are arguments ...
 </arguments>
 </template>
 ... as many templates as there are actions ...
</actiontemplates>

Where the fields NAME, ARG_NAME and ARG_TYPE are defined as

NAME This is the name of the action as it appears in the Storyboard Engine runtime (gapp) file.

ARG_NAME This is the name of an argument option as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_TYPE This is the type of the argument and can be one of the following:

boolean A boolean true/false value. An optional attribute, 'default' can be used to spec-
ify the default value.

209

Extending Storyboard Functionality

color A color value. An optional attribute, 'default' can be used to specify the default
value as a hexadecimal value (0xRRGGBB).

file A file string. An optional 'extensions' argument list contains a list of com-
ma separated filter file extensions, without leading dots for example exten-
sions="gif;png;bmp"

float A numeric floating point value. An optional attribute, 'default', can be used to
specify the default value. The range of the number can also be limited using
the optional 'min' and 'max' attributes

integer A numeric integer value. An optional attribute, 'default', can be used to spec-
ify the default value. The range of the number can also be limited using the
optional 'min' and 'max' attributes

string A text string value. An optional attribute, 'default' can be used to specify the
default string value.

When the template file is placed in the templates directory, the new actions will be automatically
loaded into Designer the next time the project is opened.

User Defined Render Extension Templates
When the Storyboard SDK is used to contribute new render extensions, it is desirable to have those render
extensions available within the Storyboard Designer environment so that application designers can use the
render extensions and configure their properties. To do this, an render extension template file describing
the name and properties of the render extension can be created. It is not possible to present a visual display
of the render extension within Storyboard Designer so a placeholder image is presented in its place.

Render extension template files are added to individual projects and should be placed in the templates
directory of the project and should use the file extension sbrt (Storyboard Render Template)

The format of a render extension template file (sbat) file is as follows:

<rendertemplates>
 <template name="NAME">
 <arguments>
 <element name="ARG_NAME" type="ARG_TYPE" />
 ... as many elements as there are arguments ...
 </arguments>
 </template>
 ... as many templates as there are actions ...
</rendertemplates>

Where the fields NAME, ARG_NAME and ARG_TYPE are defined as

NAME This is the name of the render extension as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_NAME This is the name of an argument option as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_TYPE This is the type of the argument and can be one of the following:

210

Extending Storyboard Functionality

boolean A boolean true/false value. An optional attribute, 'default' can be used to spec-
ify the default value.

color A color value. An optional attribute, 'default' can be used to specify the default
value as a hexadecimal value (0xRRGGBB).

file A file string. An optional 'extensions' argument list contains a list of com-
ma separated filter file extensions, without leading dots for example exten-
sions="gif;png;bmp"

float A numeric floating point value. An optional attribute, 'default', can be used to
specify the default value. The range of the number can also be limited using
the optional 'min' and 'max' attributes

integer A numeric integer value. An optional attribute, 'default', can be used to spec-
ify the default value. The range of the number can also be limited using the
optional 'min' and 'max' attributes

string A text string value. An optional attribute, 'default' can be used to specify the
default string value.

When the template file is placed in the templates directory, the new render extensions will be auto-
matically loaded into Designer the next time the project is opened.

211

Chapter 31. Structuring Your
Photoshop Import Content
PSD file Structure for Import into Storyboard

In Storyboard the appearance of the UI after using the Photoshop™ File Import feature will depend on
properties and attributes that are set from Photoshop™. The content and organization of a Storyboard
project can vary depending on the preparation of the Photoshop file prior to Import.

PSD File Requirements
In order to import files from Photoshop™ to Storyboard, documents must be in a RGB color mode as an
8-bit file. Other formats are not supported.

Application Model Hierarchy
Understanding the Storyboard Application Model Hierarchy will help users decide how to name and or-
ganize content in Photoshop to better control how a Storyboard application comes together when using
the PSD import feature.

212

Structuring Your Pho-
toshop Import Content

Photoshop content names and organization will dictate the name of model elements like Screens, Layers,
Groups, Controls and all of the image file names in the project image directory. How content is named
can also control how it is placed within the Application Model.

Below is how the new project is laid out after the PSD file has been imported into Storyboard.

213

Structuring Your Pho-
toshop Import Content

Artboards
Artboards in Photoshop can be used to restrict content to specific boundaries within a Photoshop file. When
imported into Storyboard, an Artboard will become a screen in the resulting application and layer content
defined within the Artboard will be applied to that screen. This feature can be used to re-orginize several
Photoshop files representing the screens of an application into one file that only needs to be imported once.

Unlike other Storyboard objects, there is no naming convention required for Artboards. All Artboards
automatically be imported as screens with the name provided.

Below is how a new project is laid out after a PSD file with artboards has been imported into Storyboard.

214

Structuring Your Pho-
toshop Import Content

Layer Effects and Blending Modes
Prior to importing a Photoshop file into Storyboard, properties that are unique to Photoshop like layer
effects, blending modes, layer fill percentages or masks need to be rasterized or converted to smart objects
in order to maintain the same appearance when they are brought into Storyboard.

By converting content with Photoshop specific rendering to smart objects, the editability within Photoshop
still exists while the objects import to Storyboard as expected.

Naming Requirements
Model elements must be named using an alpha-numeric format. The naming of model elements can be
done using combinations of “Aa-Zz” “0-9” and “_”, the underscore character. How content is named in
Photoshop will be maintained when it is brought into Storyboard. When duplicate naming occurs, controls
and files in the project image directory will then include numeric values with the name, e.g., “image.png”
“image1.png” image2.png”

Naming Conventions
The importer will organize Photoshop content according to special naming conventions that have been
assigned and place items within the Application Model accordingly. Important Naming Conventions:

215

Structuring Your Pho-
toshop Import Content

name_layer

Photoshop group folders named with _layer at the end will import to Storyboard as a layer. Content within
these group folders will import as project elements within that layer such as groups and controls. All
Storyboard groups and controls can not exist outside of a Storyboard Layer.

name_group

Photoshop group folders named with _group at the end will import to Storyboard as a group. Any content
within these groups will import as controls within that group.

name_control

Photoshop groups folders named with _control at the end will import to Storyboard as a control. Content
within these groups will import as text or image render extensions of that control.

name_up and name_down

Naming a PSD layer ending with _up directly above another layer with the same name ending with _down
will create a control that behaves as a button. The control will be assigned events and actions and given
an image variable that will work as an interactive button control upon import to Storyboard.

Common Photoshop Elements
Content from Photoshop like text layers, image layers, and smart objects will import to Storyboard as
individual controls when they are not part of a group folder. Text layers from Photoshop have the option
to import as controls with image or text render extensions.

Group folders and layers that are empty in Photoshop will be discarded, so importing an empty layer to
Storyboard will not occur and blank images can not be created from Photoshop layers that have no pixels
being drawn.

Notes created in the Photoshop file will be imported and applied as application level annotations in Sto-
ryboard.

Transparency
Photoshop layers that use a percentage of opacity will import to Storyboard with the same opacity. The
value can be changed in the properties view under that render extension's alpha setting.

216

Structuring Your Pho-
toshop Import Content

Naming Convention Deviation
Within the Photoshop Layer View, content that is not placed within a parent group folder using the _layer
naming convention will be assigned to a Storyboard layer that's automatically generated. Storyboard Lay-
ers that are automatically generated will be assigned default names, “Layer” “Layer1” “Layer2” etc.

Sub Group Folders
Photoshop group folders that contain additional group folders need to follow the Application Model hier-
archy. Layers, Groups, and Controls cannot contain model elements of the same type, e.g., Controls cannot
contain other Controls.

217

Chapter 32. Re-Importing Photoshop
and Updating Content

Re-Importing Photoshop Content
The Photoshop™ Re-Import feature enables the user to re-import a new or revised PSD file to replace
existing images in a project's image directory. The re-import wizard is initiated from the main menu »
File » Import

In the import dialog that appears, select the source PSD file to re-import and the destination Storyboard
application where the new PSD image content will be placed. Then choose Next.

On the left of the dialog window is a list of image content from the PSD file. On the right is the content
of the project's image directory. Selecting any PSD image will show candidate image match content from
the PSD file. By clicking the “move right” arrow the selected PSD image is adopted as the new project
image and replaces the model selection.

Below the separator in between the two viewers is the 'Match All Images' button. This will go through and
automatically map any unique images of the same name. The name and extension must be identical for
images to be mapped. If there is more than one identical match, the image won't be mapped.

Matching and unmatching can be undone and redone by using the common keyboard shortcuts 'CTRL-
Z' and 'CTRL-R'. If a PSD image does not have a project image with the same name it can still be added
to the project image directory by clicking Copy to Image Directory button. Content that is being replaced
will be shown in a preview below.

218

Re-Importing Photoshop
and Updating Content

Choosing 'Next' brings you to a page that allows the user to update the bounds of any of the selected
matches from the previous page. Any matches from the previous page that have changed location in the
re-imported PSD file will appear in the list at the top. Selecting an item from this list shows the location
change in the preview at the bottom, similar to the previous page. If you want to use the new location,
check the box beside the match before hitting 'Finish'.

219

Re-Importing Photoshop
and Updating Content

After updating the bounds, the next page allows the user to review any new images that have been added
in the re-import. An image is considered new if it has no identical match in the current model, and it hasn't
been mapped to anything in the first page. Selecting an item will preview it in the thumbnail below, similar
to the previous page, and checking it will import the new control into the model.

220

Re-Importing Photoshop
and Updating Content

After choosing to replace, copy or add at least one image, clicking the Finish button will show a prompt that
gives the option to overwrite image files that are being updated or keep a copy of the older images that are
being replaced. The Photoshop PSD Re-Import feature is meant to update existing content using consistent
naming. Using the Import Photoshop PSD File is better for adding new content to an existing project.

221

Appendix A. Storyboard Lua API
Storyboard Lua API

gre.APP_ROOT

gre.APP_ROOT

This is a variable that is filled in by the Storyboard Engine to point at the filesystem path for the applica-
tion's project root directory. This can be used in order to access resources in a project relative manner.
This variable is only applicable for filesystem based configurations.

Historical code may use gre.SCRIPT_ROOT .. "/.." as a way of referring to files in a project
relative manner, but gre.APP_ROOT is preferred as not all filesystems support relative path operations.
Unix forward slash directory path separator conventions are preferred when working file filenames.

Example:

 -- Open the french translation file in the translations folder
 local translation_file = gre.APP_ROOT .. "/translations/french.csv"
 local fp = io.open(translation_file, "r")
 ...

gre.SCRIPT_ROOT

gre.SCRIPT_ROOT

This is a variable that is filled in by the Storyboard Engine to contain the path to the application project's
scripts directory.

The gre.SCRIPT_ROOT variable provides a convenient way to reference the Lua script related resources
in a location independent, project relative, manner. This variable is only applicable for filesystem based
configurations.

When used in conjunction with the gre.env() function, the gre.SCRIPT_ROOT can provide an ef-
fective way to configure the search path for extra Lua modules.

Example:

-- Add the scripts/<os>-<cpu> to the Lua file resolver for require statements
-- ie/scripts/linux-x86
local target = gre.env({"target_os", "target_cpu"})

222

Storyboard Lua API

local extra_path = string.format("%s/%s-%s/?.lua;", gre.SCRIPT_ROOT,
target.target_os, target.target_cpu)
package.path = extra_path .. package.path

gre.PLUGIN_ROOT

gre.PLUGIN_ROOT

This is a variable that is filled in by the Storyboard Engine to contain the path to the Storyboard Engine's
plugins directory. This is the directory that is specified to the model_mgr using the -omodel_mgr,plu-
gin_path option or via the SB_PLUGINSenvironment variable. This path can be used to load appli-
cation specific binaries that may be packaged with a particular Storyboard Engine. This variable is only
applicable for systems that dynamically load plugins from a filesystem.

gre.LOG_ constants

gre.LOG_ALWAYS gre.LOG_ERROR gre.LOG_WARNING gre.LOG_INFO gre.LOG_EVENT gre.LOG_ACTION
gre.LOG_DIAG1 gre.LOG_DIAG2 gre.LOG_EVENT2 gre.LOG_TRACE1 gre.LOG_TRACE2

gre.LOG_ALWAYS -1 Always go to stdout

gre.LOG_ERROR 0 Errors, fatal and non-fatal

gre.LOG_WARNING 1 Warnings

gre.LOG_INFO 2 Information, one time, non-repet-
itive

gre.LOG_EVENT1 3 Event delivery, excluding mo-
tion/mtevent/redraws

gre.LOG_ACTION 4 Action execution

gre.LOG_DIAG1 5 Storyboard diagnostic informative

gre.LOG_DIAG2 6 Storyboard diagnostic detailed

gre.LOG_EVENT2 7 Motion/mtevent/redraw event de-
livery

gre.LOG_TRACE1 8 Storyboard minimal tracing

gre.LOG_TRACE2 9 Storyboard maximal tracing

gre.LEFT, gre.RIGHT, gre.CENTER, gre.TOP, gre.BOT-
TOM

gre.LEFT gre.RIGHT gre.CENTER gre.TOP gre.BOTTOM

These are definitions for horizontal and vertical values and are a shorthand for the following numeric
values representing alignment:

gre.LEFT 1

gre.CENTER 2

223

Storyboard Lua API

gre.RIGHT 3

gre.TOP 1

gre.BOTTOM 3

gre.OPAQUE, gre.TRANSPARENT

gre.OPAQUE, gre.TRANSPARENT

These are definitions for the transparency (alpha) values and are a shorthand for the following numeric
values representing extreme transparency:

gre.TRANSPARENT 0

gre.OPAQUE 255

gre.set_data

gre.set_data(
 table
)

Sets one or more items in the Storyboard application's data manager. Each index and value in the table
passed in will be set in the data manager using the index name as the key.

Parameters:
 table A table containing the variable to change as the key and the value to change it to as that key's value.

Example:

function lua_func(mapargs)
 local data_table = {}
 data_table["variable_name"] = "variable data"
 gre.set_data(data_table)
end

gre.get_data

gre.get_data(
 key
 [, key2, ...]
)

Gets one or more values from the data manager. Each argument to the function is interpreted as a data
manager key whose value should be extracted from the data manager. This function returns a table using

224

Storyboard Lua API

all the values as indexes and the corresponding value is the data returned from the data manager. A nil is
returned for any values that do not match a key in the data manager.

Parameters:
 key The key whose value should be extracted from the data manager.

Returns:
 A table containing the passed in arguments as keys and the resulting data manager values as
 the values associated with those keys.

Example - Accessing Control Variables:

function get_data_func(mapargs)
 --When accessing control variables, use the following qualified
 --model path Layer.Control.Variable
 local data_table = gre.get_data("my_layer.my_control.variable_name")
 local value = data_table["my_layer.my_control.variable_name"]
 print("control_variable_name = " .. tostring(value))
end

Example - Accessing Control Width (Internal Variable):

function get_control_width(mapargs)
 --This will extract the width (grd_width) of the control
 --'my_control' on the layer 'my_layer'
 local data = gre.get_data("my_layer.my_control.grd_width")
 local value = data["my_layer.my_control.grd_width"]
 print("The width of the control is " .. tostring(value))
end

gre.set_value

gre.set_value(
 key,
 value
 [, key2, value2, ...]
)

Set a variable in the data manager to a particular value. This function is a convenience function on top of
gre.set_data that allows the key and value to be passed as a set of arguments to the function instead
of having to create a table containing the key/value pairs.

Parameters:
 key A string value containing the key to be set with the next following value

225

Storyboard Lua API

 value The value to be assigned to the preceding argument (key)

Example:

function lua_func(mapargs)
 -- Assign the string 'variable_data' to the application variable
 -- 'variable_name'
 -- This example is the same as gre.set_data()
 gre.set_value("variable_name", "variable_data")
end

gre.get_value

gre.get_value(
 key
 [, key2, ...]
)

Get the value of a variable from the data manager. This function is a convenience function on top of
gre.get_data that allows the value to be returned directly to the caller instead of a single table return
value. A nil is returned for any values that do not match a key in the data manager.

Parameters:
 key The key whose value should be extracted from the data manager.

Returns:
 The value associated with the data manager entry for the key, or nil if no entry exists. If multiple
 keys are specified, then multiple return values will be generated matching the argument order.

Example - Accessing Control Width:

function get_control_width(mapargs)
 -- This will extract the width of the control 'my_control'
 -- on the layer 'my_layer'
 -- This is the same example as gre.get_data()
 local value = gre.get_value("my_layer.my_control.grd_width")
 print("The width of the control is " .. tostring(value))
end

gre.resolve_data_key

gre.resolve_data_key(
 key1
 [, key2, ...]

226

Storyboard Lua API

)

This function allows Lua scripts to resolve Storyboard context variables to a fully qualified name based
on the current execution context.

Parameters:
 key1 ... One or more string arguments containing the variable to resolve.

Returns:
 A table containing the arguments provided on input as keys with the values being the
 resolved data value.

Example:

-- Resolve the application my_var to a fully qualified name
local varname = "${app:my_var}"
local dv = gre.resolve_data_key(varname)
print("Full path for ${app:my_var} is " .. dv[varname])

gre.get_control_attrs

gre.get_control_attrs(
 control_name
 tags ...
)

Get properties for a control. Key name is the name of the control or a variable. Tags can be a list of
the following values:

 x, y, width, height, hidden, active, zindex, findex

A table with the results is returned.

Parameters:
 control_name The model full path of the control to get information about
 tags One or more tags as strings

Returns:
 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}

227

Storyboard Lua API

 -- check if my_control is currently hidden
 dk_data = gre.get_control_attrs("my_layer.my_control", "hidden")
 if dk_data["hidden"] == 1 then
 print("my_control is currently hidden")
 else
 print("my_control is currently visible")
 end
end

gre.set_control_attrs

gre.set_control_attrs(
 control_name,
 tag_table
)

Set properties for a control. The control_name is the name of the control or a variable. The tag_table
contains the tags and values for the properties to set.

 x, y, width, height, hidden, active, zindex, findex, effect

In the case of the focus index (findex), the initial value set in Storyboard Designer must be non-zero in
order for it to be changed dynamically at runtime

The effect tag is a special attribute that can be used with OpenGL rendering platforms to apply a custom
shader directly as an effect on the control object

Parameters:
 control_name The model full path of the control to change properties on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Examples:

function set_control_hidden()
 local dk_data = {}
 dk_data["hidden"] = 1
 gre.set_control_attrs("my_control", dk_data)
end

function set_control_blur_effect()
 local dk_data = {}
 local effect = {}

 effect["name"] = "blur"
 effect["passes"] = 3
 effect["radius"] = 1
 effect["composite"] = true

228

Storyboard Lua API

 dk_data["effect"] = effect
 gre.set_control_attrs("my_control", dk_data)
end

gre.get_table_attrs

gre.get_table_attrs(
 table_name,
 tags
)

Get properties for a table. Key name is the name of the control or a variable. Tags can be any of the
control tags and any of the following values:

rows The number of rows in the table

cols The number of columns in the table

visible_rows The number of visible rows in the table

visible_cols The number of visible columns in the table

active_row The active cell row

active_col The active cell column

row The row index of the upper left row

col The column index of the upper left column

xoffset The current scroll offset in the x direction

yoffset The current scroll offset in the y direction

scroll_enabled The current state of table content scrolling enablement. The value is 0 if scrolling
is not enabled or 1 if it is.

Parameters:
 table_name The model full path of the table to get information about
 tags One or more tags as strings

Returns:
 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}

229

Storyboard Lua API

 -- Get the active row/column
 dk_data = gre.get_table_attrs("my_table", "active_row", "active_col")
 print("Active Cell: " .. tostring(dk_data["active_row"] .. ","
 .. tostring(dk_data["active_col"]))
end

gre.set_table_attrs

gre.set_table_attrs(
 table_name,
 tag_table
)

Set properties for a table. The table_name is the name of the control or a variable. The tag_table contains
the tags and values for the properties to set.

 x, y, width, height, hidden, active, rows, cols, xoffset, yoffset, scroll_enabled

The scroll enablement value can only be set if the table had scrolling enabled in Designer.

Parameters:
 table_name The model full path of the table to change properties on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Example:

function resize_table()
 local dk_data = {}
 dk_data["rows"] = 5
 dk_data["cols"] = 10
 gre.set_table_attrs("my_table", dk_data)
end

gre.get_table_cell_attrs

gre.get_table_cell_attrs(
 table_name,
 row,
 col,
 tags ...
)

Get properties for a table cell. table_name is the name of the table. Tags can be a list of the following
values:

 x, y, width, height, hidden

230

Storyboard Lua API

A table with the results is returned.

Parameters:
 table_name The model full path of the table to get information about
 row The row of the table to get information on
 col The column of the table to get information on
 tags One or more tags as strings

Returns:
 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}
 -- check if my_control is currently hidden
 dk_data = gre.get_table_cell_attrs("my_table", 1, 1, "hidden")
 if dk_data["hidden"] == 1 then
 print("cell 1.1 of my_table is currently hidden")
 else
 print("cell 1.1 of my_table is currently visible")
 end
end

gre.get_group_attrs

gre.get_group_attrs(
 group_name
 tags ...
)

Get properties for a group. Key name is the name of the group or a variable. Tags can be a list of the
following values:

 x, y, hidden

A table with the results is returned.

Parameters:
 group_name The model full path of the control to get information about
 tags One or more tags as strings

Returns:
 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

231

Storyboard Lua API

function check_if_hidden()
 local dk_data = {}
 -- check if my_group is currently hidden
 dk_data = gre.get_group_attrs("my_layer.my_group", "hidden")
 if dk_data["hidden"] == 1 then
 print("my_control is currently hidden")
 else
 print("my_control is currently visible")
 end
end

gre.set_group_attrs

gre.set_group_attrs(
 group_name,
 tag_table
)

Set properties for a group. The group_name is the name of the group or a variable. The tag_table contains
the tags and values for the properties to set.

 x, y, hidden

Parameters:
 group_name The model full path of the group to change properties on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Examples:

function set_control_hidden()
 local dk_data = {}
 dk_data["hidden"] = 1
 gre.set_control_attrs("my_layer.my_group", dk_data)
end

function set_control_blur_effect()
 local dk_data = {}
 local effect = {}

 effect["name"] = "blur"
 effect["passes"] = 3
 effect["radius"] = 1
 effect["composite"] = true

232

Storyboard Lua API

 dk_data["effect"] = effect
 gre.set_control_attrs("my_control", dk_data)
end

gre.get_layer_attrs

gre.get_layer_attrs(
 layer_name
 tags...
)

Get properties for a layer instance associated with a particular screen. The layer_name specifies either
the fully qualified name of a layer instance using the ScreenName.LayerName naming convention or, if
only the layer name is specified, the name will refer to a layer instance associated with the current screen

The tags are a list of string properties associated with the layer instance and can include one or more of
the following values:

 x, y, width, height, alpha, hidden, xoffset, yoffset, scroll_enabled, geometry, effect

A table containing the keys and their respective values is returned or nil if the layer can not be found.

Parameters:
 layer_name The model full path of the layer to get information about
 tags One or more tags as strings

Returns:
 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 -- check if my_layer is currently hidden
 local data = gre.get_layer_attrs("my_layer", "hidden")
 if data.hidden == 1 then
 print("my_layer is currently hidden")
 else
 print("my_layer is currently visible")
 end
end

gre.set_layer_attrs

gre.set_layer_attrs(

233

Storyboard Lua API

 layer_name,
 tag_table
)

Set properties for a layer instance associated with a particular screen. The layer_name specifies either the
fully qualified name of a layer instance using the ScreenName.LayerName naming convention or, if only
the layer name is specified, the name will refer to a layer instance associated with the current screen

 x, y, width, height, alpha, hidden, xoffset, yoffset, scroll_enabled, geometry, effect

The scroll enablement value can only be set if the layer had scrolling enabled in Designer.

Parameters:
 layer_name The model full path of the layer to change properties on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Example:

function set_layer_hidden()
 local data = {}
 data.hidden = 1
 gre.set_layer_attrs("my_layer", data)
end

Render Effects:

The attribute contains a table with the name and attributes for the specific render effect being applied.
Currently the following effects are defined:

blur, geometry

blur

This effect will add a blur to the contents of the layer. The following blur attributes are defined:

Parameters:
 passes This is a number value which is the number of blur passes
 composite This is a boolean value. When true the blur will be applied to the final composition
 of this layer with the framebuffer content. If false the blur is only applied to the
 layer content.
 radius This is a number value which defined the radius of the blur effect in pixels

Example:

function cbBlurEffect(mapargs)
 local attrs = {}
 local effect = {}

234

Storyboard Lua API

 effect["name"] = "blur"
 effect["passes"] = 2
 effect["radius"] = 1
 effect["composite"] = false
 attrs["effect"] = effect
 gre.set_layer_attrs("background.control1",attrs)
end

geometry

This effect will allow custom OpenGL ES geometry to be applied to the rendering of the control or layer.
This includes custom vertices and UV coordinates. The following attributes are defined:

Parameters:
 width The viewport width for the content
 height The viewport height for the content
 type The type of primitive to render: fan | triangles
 nvert The number of vertex coordinates. Options are 2 (x,y) and 3 (x, y, z)
 nuv The number of UV coordinates. Options are 2 or 0
 data The table containing the vertex data

Example:

function cbSetGeometry(mapargs)
 local gdata = {}
 local dz = 0.0
 local offset = mapargs.offset
 local dz2 = -offset
 local w
 local h = 240

 dz2 = -offset
 w = 320 - offset
 gdata = {
 {x=w/2, y=h/2, z=dz2, u=0.5, v=0.5},

 {x=w, y=0, z=dz, u=1.0, v=0},
 {x=w/2, y=0, z=dz2, u=0.5, v=0},
 {x=0, y=0, z=dz, u=0, v=0},

 {x=0, y=h, z=dz, u=0, v=1.0},
 {x=w/2, y=h, z=dz2, u=0.5, v=1.0},
 {x=w, y=h, z=dz, u=1.0, v=1.0},

 {x=w, y=0, z=dz, u=1.0, v=0},
 }

 local attrs = {}

235

Storyboard Lua API

 attrs["geometry"] = {
 width = w,
 height = h,
 type = "fan",
 nvert = 3,
 nuv = 2,
 data = gdata
 }
 gre.set_layer_attrs("geometry.layer3",attrs)
end

gre.set_layer_attrs_global

gre.set_layer_attrs_global(
 layer_name,
 table
)

Set properties for a layer globally on all instances of the layer on all screens. The layer_name is the name
of the layer. Table contains the tags and values for the properties to set.

 alpha, hidden, active, x, y, width, height

Parameters:
 layer_name The model full path of the layer to change properties on
 tag_table A table with tags as the keys and the new values stored as the table's key values

gre.screen_attach_layer

gre.screen_attach_layer(
 layer_name,
 [zindex]
)
gre.screen_attach_layer(
 layer_name,
 screen_list,
 [zindex]
)

Attaches a layer to a screen dynamically creating a new layer instance. When used without a screen list
this will attach the specified layer to all screens in the application. When used with a list of screens it will
bind the specified layer to all of the screens named in the screen list.

If zindex is included, then the layer will be inserted at the specified zindex (0 = backmost). If zindex is
not set, then the layer will be inserted at the top of the existing layer stack for the screen (equivalent to
specifying a value greater than all of the layers in the project).

236

Storyboard Lua API

If the layer is already present on a screen, then that layers position in the screen z-order will be adjusted to
the specified value. If the layer name used is a specific layer instance (ie screen_name.layer_name) then
all of the properties of that layer instance (x, y, alpha, hidden) will also be copied to the new layer instance.

Parameters:
 layer_name The name of the layer to attach to screens
 screen_list A lua table containing the list of screen names to add the layer to
 zindex The z-order (0 = backmost) to add the layer to the screen at.

gre.resize_control

gre.resize_control(
 control_name,
 dw,
 dh,
 w,
 h,
 [ah],
 [av]
)

Resize a control. The control_name is the name of the control or a variable. Setting dw and or dh will
resize the control by the specified delta from its current size. The dw and dh values can be 0 to set an
absolute position using the w and h values only.

Optional anchors can allow for automatic adjustment of the control's x and y positions to keep the control
anchored in the desired position as the control's size change:

Horizontal:

• grd.LEFT anchor will not adjust the control's x position. This is the default behavior.

• grd.CENTER anchor will adjust the control's x position by half the difference in control width.

• grd.RIGHT anchor will adjust the control's x position by the difference in control width.

Vertical:

• grd.TOP anchor will not adjust the control's y position. This is the default behavior.

• grd.CENTER anchor will adjust the control's y position by half the difference in control height.

• grd.BOTTOM anchor will adjust the control's y position the difference in control height.

Parameters:
 control_name The model full path of the control to move
 dx A delta from the current x position or 0 to move using x
 dy A delta from the current y position or 0 to move using y
 x The x position to move to in absolute co-ordinates (omit to use dx)
 y The y position to move to in absolute co-ordinates (omit to use dy)

237

Storyboard Lua API

 ah The horizontal anchor, gre.LEFT, gre.CENTER or gre.RIGHT (Optional, default is gre.LEFT)
 vh The vertical anchor, gre.TOP, gre.CENTER or gre.BOTTOM (Optional, default is gre.TOP)

gre.move_control

gre.move_control(
 control_name,
 dx,
 dy,
 x,
 y,
 [ah],
 [av]
)

Move a control to a new position. The control_name is the name of the control or a variable. Setting dx
and or dy will move the control by the specified delta from its current position. The dx and dy values
can be 0 to set an absolute position using the x and y values only.

Optional anchors allow for automatic adjustment of x and y values:

Horizontal:

• grd.LEFT anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the x input by half the control width.

• grd.RIGHT anchor will adjust the x input by the full control width.

Vertical:

• grd.TOP anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the y input by half the control height.

• grd.BOTTOM anchor will adjust the y input by the full control height.

Parameters:
 control_name The model full path of the control to move
 dx A delta from the current x position or 0 to move using x
 dy A delta from the current y position or 0 to move using y
 x The x position to move to in absolute co-ordinates (omit to use dx)
 y The y position to move to in absolute co-ordinates (omit to use dy)
 ah The horizontal anchor, gre.LEFT, gre.CENTER or gre.RIGHT (Optional, default is gre.LEFT)
 vh The vertical anchor,gre.TOP, gre.CENTER or gre.BOTTOM (Optional, default is gre.TOP)

gre.move_layer

gre.move_layer(

238

Storyboard Lua API

 layer_name,
 dx,
 dy,
 x,
 y
)

Move a layer to a new position. The layer_name is the name of the layer or a variable that is associated
with the layer name. Setting dx or dy will move the layer by the specified delta from its current position.
The dx and dy values can be 0 to set an absolute position using the x and y values only.

Parameters:
 layer_name The model full path of the layer to move
 dx A delta from the current x position or 0 to move using x
 dy A delta from the current y position or 0 to move using y
 x The x position to move to in absolute co-ordinates (omit to use dx)
 y The y position to move to in absolute co-ordinates (omit to use dy)

gre.set_focus

gre.set_focus(
 fqn
)

Set the focus to a control as described by its fully qualified name. This function returns true if the control
could be found and was focusable and focus could be set to it. If the control can be found but is not
focusable then false will be returned. If the control can't be found then nil will be returned.

When the fully qualified name indicates the row and column of a table, then this function will set the active
table cell rather than adjusting the control focus.

Parameters:
 fqn The fully qualified name of the control to receive focus

Returns:

 true for success, false for failure or nil if an error occurs during processing

Example:

-- Set the focus to MyControl
local didApply = gre.set_focus("MyLayer.MyControl")
if(not didApply) then
 print("Failed to set focus")
end

-- Set to focus to the second row item in a table

239

Storyboard Lua API

local didApply = gre.set_focus("MyLayer.MyTable.2.1")
if(not didApply) then
 print("Failed to set table cell focus")
end

gre.get_focus

gre.set_focus()

Get the fully qualified path to the control that is currently focused or nil if no control currently has focus

Returns:

 A string with the fully qualified name of the control with focus or nil if no control focused.

gre.send_event

gre.send_event(
 event,
 [channel]
)

Send an event to the application or to a Storyboard IO channel. channel is an optional parameter and if
channel is not passed then the channel will be chosen as follows:

If the environment variable GREIONAME is set then it will be used otherwise the default channel is used.

Parameters:
 event A string containing the event to send
 OR
 A table containing the following fields:
 name A string containing the event to send
 target A string containing the object to target the event to (see Storyboard IO) (optional)
 format A string format of the event data payload (optional)
 data A table whose keys match up with the keys specified in the format (optional)
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

240

Storyboard Lua API

-- Send to the event to the application :
local success, error = gre.send_event("my_event")
if(success == false) then
 print(error)
 --handle error
end

--To send the event to a Storyboard IO channel via parameters:
local success, error = gre.send_event("my_event", “io_channel_name”)
if(success == false) then
 print(error)
 --handle error
end

gre.send_event_target

gre.send_event_target(
 event_name,
 target,
 [channel]
)

Send an event to a targeted model element (control, layer instance or screen) using the model's fully qual-
ified path. The channel is an optional parameter.

Parameters:
 event_name A string containing the event to send
 target A string containing the object to target the event to (see Storyboard IO)
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

-- Send an event directed at a particular control target:
gre.send_event_target("my_event", "my_layer.my_control")

-- Send an event directed at a particular control on the channel
-- "io_channel_name" and grab the status of the operation

241

Storyboard Lua API

local success, error = gre.send_event_target("my_event",
 "my_layer.my_control", "io_channel_name")
if(success == false) then
 print(error)
 --handle error
end

gre.send_event_data

gre.send_event_data(
 event_name,
 format_string,
 data,
 [channel]
)

Send an event with custom data to the application or to a Storyboard IO channel. The data parameter is a
Lua table where the indexes match the values from the format string. channel is an optional parameter.

Special consideration is required for sending data that is to be formatted as an array (i.e., N[suf]M where
M is greater than 0). In this case the data entry should be provided as a Lua table and not as a raw value
parameter.

Data parameters must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0
is good, 2u1 4u1 4u1 1s0 is not

Parameters:
 event_name A string containing the event to send
 format_string A string format of the event data payload
 data A table whose keys match up with the keys specified in the format_string
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

-- Send a 'int32_update' event with a 32bit signed integer (int32_t)
-- payload to the 'controller' channel
function send_integer(value)
 local format = "4s1 value"
 local data = {}
 data["value"] = value
 local success, error = gre.send_event_data("int32_update", format,
 data, "controller")
 if(success == false) then

242

Storyboard Lua API

 print(error)
 --handle error
 end
end

-- Send a 'int16_update' event with two 16bit signed integers (int16_t)
-- payload to the 'controller' channel
function send_two_integers(value1, value2)
 local format = "2s1 first 2s1 second"
 local data = {}
 data["first"] = value1
 data["second"] = value2
 local success, error = gre.send_event_data("int16_update", format,
 data, "controller")
 if(success == false) then
 print(error)
 --handle error
 end
end

-- Send an 'array_update' event with an array of int32_t numbers (provided
-- as a table) to the client
function send_integer_array(values)
 -- Generate the format string dynamically based on the number of entries
 local count = #values
 local format = string.format("4s%d values", count)
 local data = {}
 data["values"] = values
 local success, error = gre.send_event_data("array_update", format,
 data, "controller")
 if(success == false) then
 print(error)
 --handle error
 end
end

send_integer(12)
send_two_integers(10, 20)
send_integer_array({10, 20, 30, 40})

gre.greio_disconnect

gre.greio_disconnect(
 channel,
 [is_receive_channel]
)

This function forces any cached Storyboard IO channel connections to the specified channel to be closed.
Subsequent calls using the same channel name will re-establish the connection to the channel if required.

Parameters:

243

Storyboard Lua API

 channel The channel that is to be disconnected.
 is_receiving An optional boolean parameter.
 -True if closing a receiving channel.
 -False or no argument if closing a sending channel.

Example:

-- Send an event to a custom channel
gre.send_event("StoryboardRocks", "my_channel")
-- Close the cached connection to that channel
gre.greio_disconnect("my_channel")

gre.clone_object

gre.clone_object(
 reference_object_name,
 new_object_name,
 parent_name,
 data
)

Create a new control, table or group (new_object_name) within an existing parent (parent_name) by copy-
ing all of the properties of an existing object (reference_object_name). This new object will have all of the
same actions, variables and it's current state will match the state of the reference object that is being copied.
In the case of cloning groups, all of the reference group's controls will be cloned into the new group.

Currently only controls and groups are supported as source reference objects.

• Controls and tables can be cloned into either layer or group parents as long as no name conflict exists.

• Groups can be cloned into layer parents as long as no name conflict exists.

The data argument is a table of properties that match the properties for that type of object as described in the
gre.set_control_attrs, gre.set_table_attrs or gre.set_group_attrs functions as
applicable. For example, most objects support x, y,hidden properties

Parameters:
 reference_object_name The name of the object that will be cloned. This may be a fully qualified name
 of a group or control
 new_object_name The name for the new object, this must be a unique name in the parents namespace
 parent_name The name of the layer or group to place this object within, this object must exist
 data Optional: A table containing control attribute tags as the keys with new values to be applied.

Example:

function create_new_control()
 local data = {}

244

Storyboard Lua API

 data["x"] = 10
 data["y"] = 10
 gre.clone_object("my_control", "my_new_control", "my_layer", data)
end

gre.delete_object

gre.delete_object(
 object_name,
)

Delete an object that has been cloned using gre.clone_object from the model. The object must be
a control, table or a group.

Parameters:
 object_name The fully qualified name of the object to delete

Example:

function delete_object()
 gre.delete_object("my_layer.my_object")
end

gre.clone_control

gre.clone_control(
 reference_control_name,
 new_control_name,
 layer_name,
 data
)

This is a function to clone a control. This function has been deprecated and has been replaced with the
gre.clone_object Lua API function. See the gre.clone_object for usage and examples.

gre.delete_control

gre.delete_control(
 control_name
)

This is a function to delete a cloned control. This function has been deprecated and has been replaced with
the gre.delete_object Lua API function. See the gre.delete_object for usage and examples.

245

Storyboard Lua API

gre.poly_string

gre.poly_string(
 x_values,
 y_values
)
 or
gre.poly_string(
 {{x=, y=}, ...}
)

This is a higher performance function for generating a polygon string based on a set of numeric data points
maintained in Lua table arrays.

In the two argument form, the function receives as inputs two Lua tables whose content represents the
numeric x and y data points to be converted to a string. The tables are 1 based arrays and must be of the
same length.

In the single argument form, the function receives as input a single Lua table whose array content are
tables with an "x" and "y" member value.

The string returned is designed to be compatible with the Storyboard polygon plugin and is in the form
of X1:Y1 X1:Y2 ...

Parameters:
 x_values,
 y_values An table containing numeric data for the x and y points respectively.

 {{x=, y=}} A table containing tables with x and y members specifying the x and y points.

Example:

-- Create a triangle polygon in a 100x100 square
local x_points = { 0, 50, 100 } -- Left, Middle, Right
local y_points = { 100, 0, 100 } -- Bottom, Top, Bottom
local x_y_string = gre.poly_string(x_points, y_points)
print("X Y String: " .. x_y_string)

-- Create the same triangle, but with x,y member variables
local xy_points = { {x=0,y=100}, {x=50,y=0}, {x=100,y=100} }
local xy_string = gre.poly_string(xy_points)
print("XY String: " .. xy_string)

gre.get_string_size

gre.get_string_size(
 font,

246

Storyboard Lua API

 font_size,
 string,
 length,
 width,
 data
)

Calculate the area in pixels which the given string will occupy on the screen.

This call can only be made from the main Lua action execution thread.

Parameters:
 string The string to render
 font The name of the font to render in
 font_size The size of the font to render in
 string_length The length of the string to render or 0 for all (optional)
 width A clipping width (in pixels) for the string, used to calculate how many characters fit
 data A table containing additional options. Valid options are:
 ["length"] - number of characters to process
 ["spacing"] - letter spacing parameter
 ["wrapping"] - boolean to activate wrapping logic

Returns:
 A table containing the following entries:
 "width" width in pixels of the widest line that will be rendered
 "height" total string height in pixels
 "n_lines" number of lines text occupies when rendered

gre.load_resource

gre.load_resource(
 pool_name,
 resource_name,
 [pool parameters]
)

This function will force the loading of a resource, such as an image or font, into the Storyboard application.
This can be used in order to avoid load time delays that may be incurred as resources are lazy loaded into
the application.

This call can only be made from the main Lua action execution thread.

Parameters:
 pool_name The name of the resource pool: image or font
 resource_name The name of the resource that is to be loaded

The optional parameters vary depending on the pool being specified may not be required:
 image pool:
 w The width to cache the image at
 h The height to cache the image at

247

Storyboard Lua API

 background Whether or not to load the image asynchronously the 'background'. Asynchronous loading
 capabilities are determined by the hardware rendering capabilities of the system and
 may require serialization with the main rendering thread for a complete load to occur.
 font pool:
 size The point size of the font to load (required)
 antialias A flag indicating if anti aliasing is to be used

These options should be passed as a table as the third parameter to ensure that the loader receives the
appropriate values.

On completion of a 'background' loaded resource, the following event is sent:
 gre.resource_loaded 1s0 resource
Example:

-- Call this to pre-load the image and font into the cache
function on_app_init(mapargs)
 -- Call this to pre-load a font at a 24pt size
 local opt = {}
 opt.size = 24
 gre.load_resource("font", "fonts/DejaVu.ttf", opt)

 -- Call this to pre-load the image unscaled
 gre.load_resource("image", "images/tree.jpg")

 -- Call this to pre-load the image and scale it to 100x100
 local opt = {}
 opt.w = 100
 opt.h = 100
 gre.load_resource("image", "images/scaledtree.jpg", opt)

 -- Call this to pre-load the image and scale it to 100x100 asynchronously
 local opt = {}
 opt.w = 100
 opt.h = 100
 opt.background = 1
 gre.load_resource("image", "images/scaledtreebg.jpg", opt)
end

gre.dump_resource

gre.dump_resource(
 pool_name,
 resource_name
)

This function performs the opposite of the gre.load_resource call and removes a resource from the
specified resource pool cache.

This call can only be made from the main Lua action execution thread.

248

Storyboard Lua API

Parameters:
 pool_name The name of the resource pool: image or font
 resource_name The name of the resource that is to be removed

Example:

-- Force the tree.jpg image out of the cache, image will reload as required
function flush_tree_image()
 gre.dump_resource("image", "images/tree.jpg")
 gre.dump_resource("font", "fonts/DejaVu.ttf:18")
end

gre.walk_pool

gre.walk_pool(
 pool_name
)

This function reports on the memory used by all of the resources loaded into a particular resource pool.

Parameters:
 pool_name The resource pool whose content should be reported

Returns:

 A table is returned with keys as the resources that are contained in the pool and values
 indicating the number of bytes that a particular resource is using within the system.

Example:

-- Display the content of the current image cache
function show_image_cache(mapargs)
 print("Images")
 local data = gre.walk_pool("image")
 for k,v in pairs(data) do
 print(" ".. tostring(k) .. "=" .. tostring(v))
 end
end

gre.load_image

gre.load_image(
 image_name,

249

Storyboard Lua API

 [optional table of parameters]
)

This function will force the loading of an image into the Storyboard application. This can be used in order
to avoid load time delays that may be incurred as resources are lazy loaded into the application.

This is a convenience function for calling the more generic gre.load_resource

This call can only be made from the main Lua action execution thread.

Parameters:
 resource_name The name of the resource that is to be loaded

The optional parameters are as follows:
 w The width to cache the image at
 h The height to cache the image at
 background Whether or not to load the image asynchronously the 'background'. Asynchronous loading
 capabilities are determined by the hardware rendering capabilities of the system and
 may require serialization with the main rendering thread for a complete load to occur.

On completion of a 'background' loaded resource, the following event is sent:
 gre.resource_loaded 1s0 resource

gre.timer_set_timeout

gre.timer_set_timeout(
 function,
 timeout
)

This function creates a one-shot timer which fires after "timeout" milliseconds and then executes "function"

Parameters:
 function The function to be called when the timer fires
 timeout The time in milliseconds before the timer should fire

Returns:

 A piece of lightuserdata which serves as an identifier for the timer

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

250

Storyboard Lua API

--Call cb_func after 1 second
function cb_set_timeout()
 idval = gre.timer_set_timeout(cb_func, 1000)
end

gre.timer_set_interval

gre.timer_set_interval(
 function,
 interval
)

This function creates a repeating timer which fires every "interval" milliseconds and then executes "func-
tion"

Parameters:
 function The function to be called when the timer fires
 interval The time in milliseconds of how often the timer should fire

Returns:
 A piece of lightuserdata which serves as an identifier for the timer

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func every 2 seconds
function cb_set_interval()
 idval = gre.timer_set_interval(cb_func, 2000)
end

gre.timer_clear_timeout

gre.timer_clear_timeout(
 id
)

This function stops an existing timer from firing

Parameters:
 id The lightuserdata representing the timer

251

Storyboard Lua API

Returns:
 Nothing

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func after 5 seconds
function cb_set_timeout()
 idval = gre.timer_set_timeout(cb_func, 2000)
end

function cb_clear_timeout()
 local data

 data = gre.timer_clear_timeout(idval)
end

gre.timer_clear_interval

gre.timer_clear_interval(
 id
)

This function stops an existing timer from firing

Parameters:
 id The lightuserdata representing the timer

Returns:
 Nothing

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func every 5 seconds
function cb_set_interval()
 idval = gre.timer_set_interval(cb_func, 2000)

252

Storyboard Lua API

end

function cb_clear_interval()
 local data

 data = gre.timer_clear_interval(idval)
end

gre.animation_create

gre.animation_create(fps, [auto_destroy], [end_callback])

Create a new animation at the desired frame rate (fps). The second parameter (optional), auto_destroy,
tells if the animation should be released once completed. If you specify a value of 1 the animation will be
released and the returned id is not valid once the animation has completed. The third parameter (optional)
indicates a callback function to be invoked when the animation is complete.

Parameters:
 fps The animation frame rate
 auto_destroy Pass 1 in to release the animation once completed
 end_callback Provide a Lua function to be called in the animation
Returns
 An animation id to be used on future animation calls, nil on failure.

Example:

function animation_create(mapargs, fps)
 local id
 id = gre.animation_create(fps)
end

--Example of an creating an animation with an animation complete callback
local animation_state = "STOPPED"
function animation_create(mapargs, fps)
 local id
 id = gre.animation_create(fps, 0, animation_complete)

 gre.animation_trigger(id, {context="my_layer.my_control",
 id="my_control_animation"})
 animation_state = "RUNNING"
end

--The callback's first argument will be the completed animation's id.
--When triggered with an animation instance id (e.g., "my_control_animation"),
--otherwise it will be the id returned from calling animation_create.
function animation_complete(id)
 animation_state = "COMPLETED"
end

253

Storyboard Lua API

gre.animation_add_step
gre.animation_add_step(id, data)

Add a step to a created animation. The id must be from a call to gre.animation_create. The data parameter
defines the animation step values.

Parameters:
 id The animation id

 data A table of animation step values which can include:

 key: The data key for the animation step to act upon
 rate: The animation rate string: [linear | easein | easeout | easeinout | bounce]
 duration: The length of the step (msec)
 offset: The offset from animation start where this step begins (msec)
 from: The value to start the animation at, if not specified the value is the current value of "key"
 to: The end point for the animation
 delta: The delta for the end of the animation from the start point. If both "to" and "delta" are given
 then the "to" value is used.

Example:

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec and auto-destroy
 -- it on completion
 id = gre.animation_create(60, 1)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)
end

gre.animation_destroy
gre.animation_destroy(id)

Destroy the animation associated with id.

Parameters:
 id The animation to destroy

Example:

254

Storyboard Lua API

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec
 id = gre.animation_create(60)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)

 -- destroy it
 gre.animation_destroy(id)
end

gre.animation_trigger
gre.animation_trigger(animation_id, data)

gre.animation_trigger("animation_name")

Trigger an animation to run. If an animation_id is used to trigger the animation, then it must be the return
value from gre.animation_create(). If a name is used to trigger an animation, then that name must be the
name of the animation specified in Designer. This function can take an optional parameter, data_table.
The data_table contains the tags and values for the extra arguments to set.

Parameters:
 animation_id The animation to trigger
 data A table containing the tags and values for the extra arguments to set
 id The animation id used in the case of multiple animations with the same name
 context The fully qualified name of an object in the model which will be used as the context for the
 animation

Example:

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec and auto-destroy
 -- it on completion
 id = gre.animation_create(60, 1)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)

 gre.animation_trigger(id)

255

Storyboard Lua API

end

--Example of using gre.animation_trigger passing animation names.
function cb_toggle_cur_5day()
 if cur_5day_toggle == false then
 gre.animation_trigger("show_5day")
 else
 gre.animation_trigger("hide_mon_to_fri")
 end
end

--Example of using gre.animation_trigger with context.
function cb_toggle_cur_5day()
 local data = {}

 data["context"] = "Layer1.mycontrol"
 gre.animation_trigger("show_5day", data)
end

gre.animation_stop
gre.animation_stop(animation_id, data)

gre.animation_stop("animation_name")

Stop an animation. If an animation_id is used to stop the animation, then it must be the return value from
gre.animation_create(). If a name is used to stop an animation, then that name must be the name of the
animation specified in Designer. This function can take an optional parameter, data_table. The data_table
contains the tags and values for the extra arguments to set.

Parameters:
 animation_id The animation to stop
 data A table containing the tags and values for the extra arguments to set
 id The animation id used in the case of multiple animations with the same name
 context The fully qualified name of an object in the model which will be used as the context for the
 animation

Example:

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec and auto-destroy
 -- it on completion
 id = gre.animation_create(60, 1)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"

256

Storyboard Lua API

 gre.animation_add_step(id, data)

 gre.animation_trigger(id)

 --do stuff

 --Stop the animation
 gre.animation_stop(id)
end

--Example of using gre.animation_stop passing animation names.
function cb_stop_cur_5day()
 if cur_5day_toggle == false then
 gre.animation_stop("show_5day")
 else
 gre.animation_stop("hide_mon_to_fri")
 end
end

--Example of using gre.animation_stop with context.
function cb_toggle_cur_5day()
 local data = {}

 data["context"] = "Layer1.mycontrol"
 gre.animation_stop("show_5day", data)
end

gre.animation_pause
gre.animation_pause(animation_id, data)

gre.animation_pause("animation_name")

Pause a running animation. If an animation_id is used to pause the animation, then it must be the return
value from gre.animation_create(). If a name is used to pause an animation, then that name must be the
name of the animation specified in Designer. This function can take an optional parameter, data_table.
The data_table contains the tags and values for the extra arguments to set.

Parameters:
 animation_id The running animation to pause
 data A table containing the tags and values for the extra arguments to set
 id The animation id used in the case of multiple animations with the same name
 context The fully qualified name of an object in the model which will be used as the context for the
 animation

Example:

function pause_animation(id)
 --Pause the animation
 gre.animation_pause(id)

257

Storyboard Lua API

end

--Example of using gre.animation_pause passing animation names.
function cb_pause_cur_5day()
 if cur_5day_toggle == false then
 gre.animation_pause("show_5day")
 else
 gre.animation_pause("hide_mon_to_fri")
 end
end

--Example of using gre.animation_pause with context.
function cb_pause_cur_5day()
 local data = {}

 data["context"] = "Layer1.mycontrol"
 gre.animation_pause("show_5day", data)
end

gre.animation_resume
gre.animation_resume(animation_id, data)

gre.animation_resume("animation_name")

Pause a running animation. If an animation_id is used to pause the animation, then it must be the return
value from gre.animation_create(). If a name is used to pause an animation, then that name must be the
name of the animation specified in Designer. This function can take an optional parameter, data_table.
The data_table contains the tags and values for the extra arguments to set.

Parameters:
 animation_id The running animation to pause
 data A table containing the tags and values for the extra arguments to set
 id The animation id used in the case of multiple animations with the same name
 context The fully qualified name of an object in the model which will be used as the context for the
 animation

Example:

function resume_animation(id)
 --Resume the animation
 gre.animation_resume(id)
end

--Example of using gre.animation_resume passing animation names.
function cb_resume_cur_5day()
 if cur_5day_toggle == false then
 gre.animation_resume("show_5day")
 else
 gre.animation_resume("hide_mon_to_fri")

258

Storyboard Lua API

 end
end

--Example of using gre.animation_resume with context.
function cb_resume_cur_5day()
 local data = {}

 data["context"] = "Layer1.mycontrol"
 gre.animation_resume("show_5day", data)
end

gre.animation_create_tween

gre.animation_create_tween(name, tween_callback)

Create a new animation tweening (interpolation) function that can be used by both Lua and Animation
Timeline animations. The name of the tweening function cannot collide with any existing animation tween-
ing names. The callback function is a generic tween function that will be provided with specific parame-
ters outlining the desired range of the values being tweend and the frame at which the values should be
interpolated.

The tweening function is called with four parameters elapsed, base, change, duration. The
elapsed value indicates the interpolation location and is in the range from [0,duration] so if one
wanted to derive the percentage that the animation has completed, it would be elapsed/duration.
The base value represents the numeric starting point of interpolation and the end point of the animation
will be base+change. These four values can be applied to various transforms to return a single floating
point value that represents the desired outcome of the interpolation function at that point in time. The
output of the interpolation is clamped to the range [base,base+change] though this restriction may
be lifted in future releases of Storyboard.

Parameters:
 name The name to use for the tween operation, it is case sensitive and must not collide with
 other tween names
 tween_callback The callback function to be invoked when an animation using the named tween function is
 invoked

Returns
 true on successful registration

Example:

-- Re-implemented linear tween
local function CustomTweenCB(elapsed, base, change, duration)
 return base + ((change * elapsed) / duration)
end

-- This is called at application initialization to register the custom
-- tween function
function CBRegisterTween(mapargs)

259

Storyboard Lua API

 gre.animation_create_tween("MyTween", CustomTweenCB)
end

-- Create an animation that fades out a layer and uses the custom
-- tween function
function CBAnimation(mapargs)
 local id = gre.animation_create(60)

 local data = {}
 data["rate"] = "MyTween"
 data["duration"] = 2000
 data["offset"] = 0
 data["from"] = 255
 data["to"] = 0
 data["key"] = "MyScreen.MyLayer.grd_alpha"
 gre.animation_add_step(id, data)

 gre.animation_trigger(id)
end

gre.touch

gre.touch(
 x ,
 y,
 [channel]
)

Send a touch event to the application at the co-ordinates passed in through the parameters. channel is an
optional parameter

Parameters:
 x The x position to simulate the touch event at
 y The y position to simulate the touch event at
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

function CBTouch()
 gre.touch(25, 50)
end

function CBSendTouch()
 local success, error = gre.touch(25, 50, "my_channel")

260

Storyboard Lua API

 if(success == false) then
 print(error)
 --handle error
 end
end

gre.key_up

gre.key_up(
 code,
 [channel]
)

Send a key_up event to the application with the scancode passed in the parameters. channel is an optional
parameter

Parameters:
 code The UTF-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

function CBSpaceUp()
 gre.key_up(0x20)
end

function CBSendSpaceUp()
 local success, error = gre.key_up(0x20, "my_channel")
 if(success == false) then
 print(error)
 --handle error
 end
end

gre.key_down

gre.key_down(
 code,
 [channel]
)

Send a key_down event to the application with the scancode passed in the parameters. channel is an op-
tional parameter

261

Storyboard Lua API

Parameters:
 code The UTF-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

function CBSpaceDown()
 gre.key_down(0x20)
end

function CBSendSpaceDown()
 local success, error = gre.key_down(0x20, "my_channel")
 if(success == false) then
 print(error)
 --handle error
 end
end

gre.key_repeat

gre.key_repeat(
 code,
 [channel]
)

Send a key_repeat event to the application with the scancode passed in the parameters. channel is an
optional parameter

Parameters:
 code The UTF-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

function CBKeyRepeat()
 gre.key_repeat(0x20)
end

function CBSendKeyRepeat()
 local success, error = gre.key_repeat(0x20, "my_channel")
 if(success == false) then

262

Storyboard Lua API

 --handle error
 end
end

gre.redraw

gre.redraw(
 x,
 y,
 width,
 height,
 [channel]
)

Force a screen redraw. channel is an optional parameter. Specifying a x,y,width,height of 0 will result
in a full screen refresh occurring.

Parameters:
 x The x position of the redraw bounding box event
 y The y position of the redraw bounding box event
 width The width position of the redraw bounding box event
 height The height position of the redraw bounding box event
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

function CBRedraw()
 gre.redraw(25, 50, 100, 100)
end

function CBSendRedraw()
 local success, error = gre.redraw(25, 50, 100, 100, "my_channel")
 if(success == false) then
 print(error)
 --handle error
 end
end

gre.quit

gre.quit(
 [channel]
)

263

Storyboard Lua API

Send QUIT event to application to force shutdown. channel is an optional parameter.

Parameters:
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Returns:
 true for success, false for failure and error message string, e.g. "Can't open greio channel my_channel"

Example:

function CBQuit()
 gre.quit()
end

function CBSendQuit()
 local success, error = gre.quit("my_channel")
 if(success == false) then
 print(error)
 --handle error
 end
end

-- Send a quit message to the application
gre.quit()

gre.thread_create

gre.thread_create(func)

This function starts a new operating system thread of execution that is independent from Storyboard's main
thread. The function provided as an argument indicates the starting context for this new thread of execution.

The Storyboard data and event (get_data/set_data/send_event) API are thread safe. However
the execution of data changes outside of the main thread of execution can have a significant impact on
performance of the application and the preferred way of synchronizing data obtained in a thread with the
Storyboard UI thread is by using a Storyboard IO event and sending the data via gre.send_event or
gre.send_event_data. There are no thread specific synchronization primitives, such as mutexes,
for synchronizing Lua data access, serialize to the main thread using an event if this is a requirement.

In scenarios where a controlled shutdown and restart of a Storyboard application is required, separate
threads of execution pose a synchronization challenge. In these situations all created thread(s) must have
their execution interrupted and terminate in order for a clean shutdown to be observed. This can be ac-
complished nominally by intercepting the gre.quit event and then taking appropriate action to flag a
shutdown variable or send an unblocking event.

This function is not available on all systems and is not available if gre.thread_create is set to nil.

264

Storyboard Lua API

Parameters:
 func The Lua function to run in a separate thread of execution from the main UI thread.

Example:

-- Flag to indicate that we want our threads to quit executing
local quit_threads = false

-- Run a poll loop waiting for a file (a_file) to appear and
-- then send an event
function async_function()
 while(not quit_threads) do
 local fp = io.open("a_file")
 if(fp ~= nil) then
 fp:close()
 gre.send_event("file_created")
 return
 end
 end
end

-- Create the monitoring thread of execution
gre.thread_create(async_function)

gre.receive_event

gre.receive_event(
 channel
)

Receive an event from a Storyboard IO channel. This is a blocking call and works best when used on
a separate Lua thread.

Parameters:
 channel A Storyboard IO channel to receive the event on.

Returns:
 event A table containing the name, target, format and a data table from a received event.

Example:

-- Receive a Storyboard IO event with data payload x, y, z:
ev = gre.receive_event("my_channel")

if ev ~= nil then
 print(ev.name)

265

Storyboard Lua API

 for k,v in pairs(ev.data) do
 print(tostring(k).." "..tostring(v))
 end
end

--To disconnect from my_channel:
gre.greio_disconnect("my_channel", true)

gre.env

gre.env(
 string_key
)
or
gre.env(
 table
)

Return information about the Storyboard runtime environment. The input can be either a single string
containing the key to look up or a table of keys for variables to match. The following table describes the
available keys:

version The version of this engine as a string value. The format of the string is four version
numbers separated by dots: major.minor.service.build.

target_os The target operating system
target_cpu The target processor
renderer The name of the graphics rendering technology being used.
screen_width The dimensions of the screen width
screen_height The dimensions of the screen height
active_screen The name of the currently active screen
render_caps The rendering capabilities. Currently the only defined capability is "3d" if 3D ren-

dering is supported
mem_stats Platform memory statistics for the engine. The results are returned in a table with

string keys, indicating the type of memory value being reported, and number values
in bytes or nil if the system doesn't support the memory information request.

The key process_used returns the number of bytes of memory that is being used
by the Storyboard Engine process.

The key heap_used returns the number of bytes of memory that is specifically
being used by the heap. This number is usually smaller than the process memory
and does not typically include large memory allocations for display framebuffers or
memory mapped files.

greio_channel The current application's IO channel name.

Parameters:
 key A string or a table of strings to look up.

Returns:

266

Storyboard Lua API

 If a single string is provided as an input argument, just a single data value for that argument is returned

 If a table is provided as an input argument, then a table with key/value pairs corresponding to the keys
 of the input argument and the results they provide.

Example:

-- Get the target OS for dynamic module loading
local os = gre.env("target_os")
print("Running on target OS: " .. tostring(os))

-- Report on the Storyboard version and rendering technology
local info = gre.env({"version", "renderer"})
local msg = string.format("Storyboard version %s (%s renderer)",\
 info.version, info.renderer)
print(msg)

gre.log

gre.log(
 id,
 msg
)

Generate a log message that will be carried through the Storyboard engine logging system. This can be
more effective than using standard Lua print statement because the output can be redirected to different
outputs.

Parameters:
 id An integer value that matches the enumeration in >gre/gre.h< to prefix the
 log message with a code, or -1 to simply output the message. If non-negative value
 is used, then the output will be subjected to the verbosity logging filtering.
 msg The message to output to the logging system.

Returns:

Example:

-- These values are defined in gre for use with gre.log
--gre.LOG_ALWAYS = -1, -- Always go to stdout
--gre.LOG_ERROR = 0, -- Errors (fatal and non-fatal)
--gre.LOG_WARNING = 1, -- Warnings
--gre.LOG_INFO = 2, -- Information, one time, non-repetitive
--gre.LOG_EVENT1 = 3 -- Event delivery, excluding motion/mtevent/redraws
--gre.LOG_ACTION = 4, -- Action execution
--gre.LOG_DIAG1 = 5, -- Storyboard diagnostic informative

267

Storyboard Lua API

--gre.LOG_DIAG2 = 6, -- Storyboard diagnostic detailed
--gre.LOG_EVENT2 = 7, -- Motion/mtevent/redraw event delivery
--gre.LOG_TRACE1 = 8, -- Storyboard minimal tracing
--gre.LOG_TRACE2 = 9 -- Storyboard maximum tracing

-- Generate an error message
gre.log(gre.LOG_ERROR, "This is an error message")

-- Generate an diagnostic information message
gre.log(gre.LOG_INFO, "This is an info message")

-- Generate an unfiltered message
gre.log(gre.LOG_ALWAYS, "This message will always be shown")

gre.mstime

gre.mstime()
gre.mstime(app_relative)

Retrieve the current time in milliseconds in the default, no argument flavour. This call provides a higher
resolution than the standard Lua os.clock()or os.date() functions.

When true is passed in as an argument, then the time returned will be relative to the application start
time and aligned with the timestamps that are generated by the Storyboard logging API.

Returns:

 The current time in milliseconds in a system specific manner (gre.mstime()) or the time in milliseconds
 since the start of the application (gre.mstime(true))

Example:

-- Time an operation
local s = gre.mstime()
my_function()
local e = gre.mstime()
print("my_function took " .. tostring(e - s) .. "ms")

-- Determine how long from app start to this point
local delta = gre.mstime(true)
print(string.format("Application start to now: %d ms", delta)

gre.rgb

gre.rgb(
 r,

268

Storyboard Lua API

 g,
 b,
 [a]
)

Create a color number value from the individual red, green and blue color components. An optional fourth
argument, alpha, may be provided.

Parameters:
 r The red color field as a value from 0-255
 g The green color field as a value from 0-255
 b The blue color field as a value from 0-255
 a An optional alpha value from 0-255

Returns:
 A number value that represents the combined red, green, blue and alpha values

Example:

-- Create a grey single color value
local grey = gre.rgb(100, 100, 100)

-- Extract the red, green and blue values from the grey
local r, g, b = gre.torgb(grey)

gre.torgb, gre.to_rgb

gre.torgb(
 color
)
gre.to_rgb(
 color
)

Extract the red, green, blue and alpha components from a single color value.

Parameters:
 value The color value as a number

Returns:
 The red, green, blue and alpha components as a multi-return value set

Example:

-- Create a grey single color value
local grey = gre.rgb(100, 100, 100)

-- Extract the red, green and blue values from the grey

269

Storyboard Lua API

local r, g, b = gre.to_rgb(grey)

gre.to_alignment

gre.to_alignment(
 alignment
)

Generate a numeric alignment value based on a symbolic, case sensitive, alignment string

Parameters:
 alignment A string value of "left", "right", "center", "top", "bottom"

Returns:
 A numeric value for alignment corresponding to gre.LEFT, gre.RIGHT, gre.CENTER, gre.TOP, gre.BOTTOM

Example:

-- Set an alignment variable to be left aligned
local alignment = gre.to_alignment("left")
gre.set_value("myLayer.myControl.horizontalAlignment", alignment)

gre.to_alpha

gre.to_alpha(
 percent
)

Generate a numeric alpha value in the range of 0 - 255 based on a percentage from 0 - 100

Parameters:
 percent The percent of transparency (0 = transparent, 100 = opaque)

-- Create a 50% transparent value
local alpha = gre.to_alpha(50)
gre.set_value("myLayer.myControl.alpha", alpha)

gre.rtext_text_extent
gre.rtext_text_extent(text, target, table)

Gets the extent of a rich text field

Parameters:
 text - the rich text string to extent
 target - A string containing the parent control of the rich text rext you are targeting.

270

Storyboard Lua API

 This will target the first rich text rext found on the control. If one is found
 then the extent calculation will use that rich text rext's parameters.
 table - a table containing optional parameters

Optional parameters:
(these will override any parameters found in the targeted rich text rext)

 size - the font size to use when calculating extent
 line-height - the line height to use when calculating extent. This is a percentage of the font line height
 max-width - the max width to use when calculating extent
 regular-font - the regular font to use
 bold-font - the bold font to use
 italic-font - the italic font to use
 italic-bold-font - the italic/bold font to use

Returns:
 A table containing the rich text width ("width") and height ("height)

gre.perf_trace_point

gre.perf_trace_point(
 trace_description
)

Puts an entry in to the Storyboard performance log with the string that is provided as the description. The
time that the trace point occurs at will also be a part of the output in the performance log

Parameters:
 trace_description The description to show in the performance log
Example:

function CBAnimationDone()
 print("Animation done")
 gre.perf_trace_point("Lua Animation Finished")
end

gre.perf_trace_duration

gre.perf_trace_duration(
 trace_description,
 time
)

Puts an entry in to the Storyboard performance log with the string that is provided as the description and
a time. The time that the trace point occurs at will also be a part of the output in the performance log

271

Storyboard Lua API

Parameters:
 trace_description The description to show in the performance log
 time The time to put as a value to show in the performance log
Example:

local timeSinceLastCall = 0
function CBTimerFired()
 print("Timer Fired")
 local currentTime = gre.mstime(true);
 if(timeSinceLastCall <= 0) then
 gre.perf_trace_duration("Timer last fired", currentTime)
 else
 gre.perf_trace_duration("Timer last fired", os.difftime(currentTime,timeSinceLastCall))
 end
 timeSinceLastCall = currentTime
end

Storyboard Lua Canvas API
The Storyboard canvas API provides an interface for clients to perform their own basic drawing opera-
tions into an in-memory buffer. In order to access the drawing operations first a canvas render extension
must be created and given a unique name within the application. Once a canvas render extension is cre-
ated, a Lua canvas object can be accessed using the gre.get_canvas call. In this documentation the
object returned from the gre.get_canvas functions will be identified as a CANVAS object. Methods
associated with the CANVAS object must be invoked using the Lua colon (:) notation for example CAN-
VAS:stroke_rect

The Lua canvas API is dependent on both the Lua plugin (libgre-plugin-lua) and the canvas render
extension plugin (libgre-plugin-canvas).

CANVAS gre.get_canvas(name);

nameThis is the name of the parameter;

gre.get_canvas
gre.get_canvas(name)

Get a canvas object handle by name

Returns:
 A CANVAS object that represents the canvas or nil if no canvas can be found.

CANVAS:get_dimensions
CANVAS:get_dimensions()

272

Storyboard Lua API

Return the width and height of a canvas object.

Returns:
 A table containing two fields width and height

function PrintCanvasSize(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 print(string.format("Canvas is %d x %d", size.width, size.height));
end

CANVAS:fill
CANVAS:fill(color)

Flood fill the entire canvas with a specific color

Parameters:
 color An RGB color value as an integer value.

-- Flood fill the canvas with a red background value
function FillWithRed(name)
 local canvas = gre.get_canvas(name)
 canvas:fill(0xff0000)
end

CANVAS:fill_rect
CANVAS:fill_rect(x1, y1, x2, y2, color)

Fill a rectangle defined by the bounding area of x1,y2 to x2,y2 with a specific color

Parameters:
 x1 The x position of the first corner
 y1 The y position of the first corner
 x2 The x position of the second corner
 y2 The y position of the second corner
 color An RGB color value as an integer value.

-- Draw three colored bars across the canvas
function FillRGB(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local rw = size.width / 3
 canvas:fill_rect(0, 0, rw, size.height, 0xff0000)
 canvas:fill_rect(rw, 0, 2*rw, size.height, 0x00ff00)

273

Storyboard Lua API

 canvas:fill_rect(2*rw, 0, 3*rw, size.height, 0x0000ff)
end

CANVAS:fill_poly
CANVAS:fill_poly(xytable, color)

Fill the content of a polygon through the points defined in the xytable with a specific color. The polygon
must be a closed simple polygon.

Parameters:
 xytable A Lua table {{x=x1,y=y1},{x=x2,y=y2}...}. Alternatively two tables of parameters containing an
 array of points may be provided as in {x1,x2,..}, {y1,y2,..} similar to the section called “gre.poly_string”
 color An RGB color value as an integer value.

-- Fill a triangle using a polygon
function FillRedTrianglePoly(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local mid = size.width / 2

 -- Shrink the bounds to make the lines visible
 size.height = size.height - 2
 size.width = size.width - 2

 local pts = {}
 table.insert(pts, {x=2,y=2})
 table.insert(pts, {x=mid,y=size.height})
 table.insert(pts, {x=size.width,y=2})
 table.insert(pts, pts[1]) --Close the polygon
 canvas:fill_poly(pts, 0xff0000)
end

CANVAS:stroke_line
CANVAS:stroke_line(x1, y1, x2, y2, color)

Stroke a line between the points x1,y2 to x2,y2 with a specific color. The width of the line is the last
value passed to CANVAS:set_line_width or 1 if no width has ever been specified.

Parameters:
 x1 The x position of the first corner
 y1 The y position of the first corner
 x2 The x position of the second corner
 y2 The y position of the second corner
 color An RGB color value as an integer value.

-- Stroke a triangle with three different colored line segments

274

Storyboard Lua API

function StrokeRGB(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local mid = size.width / 2

 -- Shrink the bounds to make the lines visible
 size.height = size.height - 2
 size.width = size.width - 2

 canvas:stroke_line(2, 2, mid, size.height, 0xff0000)
 canvas:stroke_line(mid, size.height, size.width, 2, 0x00ff00)
 canvas:stroke_line(2, 2, size.width, 2, 0x0000ff)
end

CANVAS:stroke_rect
CANVAS:stroke_rect(x1, y1, x2, y2, color)

Stroke a rectangle outline defined by the bounding area of x1,y2 to x2,y2 with a specific color. The
width of the outline is the last value passed to CANVAS:set_line_width or 1 if no width has ever
been specified.

Parameters:
 x1 The x position of the first corner
 y1 The y position of the first corner
 x2 The x position of the second corner
 y2 The y position of the second corner
 color An RGB color value as an integer value.

-- Draw three colored outlines across the canvas
function StrokeRGB(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local rw = size.width / 3
 canvas:stroke_rect(0, 0, rw-1, size.height, 0xff0000)
 canvas:stroke_rect(rw, 0, 2*rw-1, size.height, 0x00ff00)
 canvas:stroke_rect(2*rw, 0, 3*rw-1, size.height, 0x0000ff)
end

CANVAS:stroke_poly
CANVAS:stroke_poly(xytable, color)

Stroke a polygon through the points defined in the xytable with a specific color. The width of the line
is the last value passed to CANVAS:set_line_width or 1 if no width has ever been specified.

Parameters:
 xytable A Lua table {{x=x1,y=y1},{x=x2,y=y2}...}. Alternatively two tables of parameters containing an
 array of points may be provided as in {x1,x2,..}, {y1,y2,..} similar to the section called “gre.poly_string”
 color An RGB color value as an integer value.

275

Storyboard Lua API

-- Stroke a triangle using a polygon
function StrokeRedTrianglePoly(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local mid = size.width / 2

 -- Shrink the bounds to make the lines visible
 size.height = size.height - 2
 size.width = size.width - 2

 local pts = {}
 table.insert(pts, {x=2,y=2})
 table.insert(pts, {x=mid,y=size.height})
 table.insert(pts, {x=size.width,y=2})
 table.insert(pts, pts[1]) --Close the polygon
 canvas:stroke_poly(pts, 0xff0000)
end

CANVAS:clear_rect
CANVAS:clear_rect(x1, y1, x2, y2)

Make transparent a rectangle defined by the bounding area of x1,y2 to x2,y2.

Parameters:
 x1 The x position of the first corner
 y1 The y position of the first corner
 x2 The x position of the second corner
 y2 The y position of the second corner

-- Fill a canvas with red and poke a transparent hole in the middle of it
function MakeTransparentHole(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local hole_width = size.width / 3
 local hole_height = size.height / 3

 cavans:fill(0xff0000)
 canvas:clear_rect(hole_width, hole_height, 2*hole_width, 2*hole_height)
end

CANVAS:set_pixel
CANVAS:set_pixel(x, y, clr)

Set the pixel value at x, y to the specified color. This is equivalent to drawing a 1x1 filled rectangle.

276

Storyboard Lua API

Parameters:
 x The x position pixel
 y The y position pixel
 color An RGB color value as an integer value.

CANVAS:set_alpha
CANVAS:set_alpha(value)

Set the transparency level with which subsequent draw operations should be performed. The default value
for alpha is 255 (fully opaque).

Parameters:
 value An integer value from 0 (transparent) to 255 (opaque). Values outside this range will be clamped.

-- Draw three colored bars with different opacities across the canvas on
-- an orange background
function FillRGB(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local rw = size.width / 3
 canvas:fill(0xff8000)
 canvas:set_alpha(50)
 canvas:fill_rect(0, 0, rw, size.height, 0xff0000)
 canvas:set_alpha(150)
 canvas:fill_rect(rw, 0, 2*rw, size.height, 0x00ff00)
 canvas:set_alpha(255)
 canvas:fill_rect(2*rw, 0, 3*rw, size.height, 0x0000ff)
end

CANVAS:set_line_width
CANVAS:set_line_width(value)

Set the line width in pixels that all subsequent stroke operations should use. The default value for line
width is 1.

Parameters:
 value An integer value greater than 1 indicating the pixel width.

-- Draw three colored outlines width different widths across the canvas
function StrokeRGB(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local rw = size.width / 3
 canvas:set_line_width(5)
 canvas:stroke_rect(0, 0, rw-1, size.height, 0xff0000)

277

Storyboard Lua API

 canvas:set_line_width(3)
 canvas:stroke_rect(rw, 0, 2*rw-1, size.height, 0x00ff00)
 canvas:set_line_width(1)
 canvas:stroke_rect(2*rw, 0, 3*rw-1, size.height, 0x0000ff)
end

CANVAS:draw_image
CANVAS:draw_image(name, attrs)

Draw an image within the canvas directed by the user specified properties.

Parameters:
 name The project relative name of the image, same as used in the the section called “Image”
 attrs A table of properties containing information about how to draw the image. This table can
 contain the following keys:
 x The x position of the upper left corner of the text (default 0)
 y The y position of the upper left corner of the text (default 0)
 w The width to scale the image to (default: natural width)
 h The height to scale the image to (default: natural height)

-- Draw an image scaled to the canvas size
function DrawImage(name)
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local attrs = {}
 attrs.w = size.width
 attrs.h = size.height
 canvas:draw_image("images/logo.png", attrs)
end

CANVAS:draw_text
CANVAS:draw_text(text, attrs)

Draw an string within the canvas directed by the user specified properties.

Parameters:
 text The text string to display
 attrs A table of properties containing information about how to draw the text. This table can
 contain the following keys:
 font The font to use to render the text (required, no default)
 x The x position of the upper left corner of the image (default 0)
 y The y position of the upper left corner of the image (default 0)
 size The point size to render the text at (default 18)
 color The color to render the text in (default black:0x00000)

-- Draw a hello world string centered on the canvas

278

Storyboard Lua API

function DrawCenteredText(name)
 local msg = "Hello World"
 local canvas = gre.get_canvas(name)
 local size = canvas:get_dimensions()
 local attrs = {}
 attrs.font = "fonts/RobotoBold.ttf"
 attrs.size = 24
 local strSize = gre.get_string_size(attrs.font, attrs.size, msg, 0)
 attrs.x = (size.width - strSize.width) / 2
 attrs.y = (size.height - strSize.height) / 2
 canvas:draw_text("Hello World", attrs)
end

Storyboard Lua DOM Module
The Storyboard gredom Lua module provides a limited access to the hierarchical model used by the Sto-
ryboard Engine. This functionality is provided in a separate plugin (plugins/libgre-plugin-lu-
agredom.so) and should be available for any target platform that contains the Lua Storyboard plugin.
Client can check for the existence of the DOM module by checking that the symbole gredom is not nil.

The DOM module provides two sets of function interfaces. The first set of functions are associated with
the gredom namespace and are used to lookup or access an Lua object (table) that contains a special set
of methods (metatable entries) that are used to extract additional information about the object. In this doc-
umentation the object returned from the gredom namespace functions will be referred to as a DOMOB-
JECT object. Methods associated with the DOMOBJECT object must be invoked using the Lua colon (:)
notation for example DOMOBJECT:get_name()

gredom

gredom.get_application

gredom.get_application()

Get an object handle for the application root

Returns:
 A DOMOBJECT object that represents the application.

gredom.get_object

gredom.get_object(fqn)

Get an object handle for the model object matching the specified fully qualified name.

Parameters:
 fqn The fully qualified name of the model entry (screen, layer, control), or a short name to
 autosearch for a match

Returns:
 A DOMOBJECT object that represents the named model object.

279

Storyboard Lua API

gredom.get_control

gredom.get_control(control)

Get a CONTROL object for the model object matching the fully qualified name. If the parameter is a
DOMOBJECT, this function behaves as a cast.

Parameters:
 control The fully qualified name of a control model object, or a DOMOBJECT representing a control.

Returns:
 A CONTROL object that represents a control model object.

gredom.get_table

gredom.get_table(table)

Get a TABLE object for the model object matching the fully qualified name. If the parameter is a DO-
MOBJECT, this function behaves as a cast.

Parameters:
 table The fully qualified name of a table model object, or a DOMOBJECT representing a table.

Returns:
 A TABLE object that represents a table model object.

gredom.get_group

gredom.get_group(group)

Get a GROUP object for the model object matching the fully qualified name. If the parameter is a DO-
MOBJECT, this function behaves as a cast.

Parameters:
 group The fully qualified name of a group model object, or a DOMOBJECT representing a group.

Returns:
 A GROUP object that represents a group model object.

gredom.get_layer

gredom.get_layer(layer)

Get a LAYER object for the model object matching the fully qualified name. If the parameter is a DO-
MOBJECT, this function behaves as a cast.

Parameters:
 layer The fully qualified name of a layer model object, or a DOMOBJECT representing a layer.

Returns:
 A LAYER object that represents a layer model object.

280

Storyboard Lua API

gredom.get_layer_instance

gredom.get_layer_instance(layerinstance)

Get a LAYERINSTANCE object for the model object matching the fully qualified name. If the parameter
is a DOMOBJECT, this function behaves as a cast.

Parameters:
 layerinstance The fully qualified name of a layer instance model object, or a DOMOBJECT representing a layer instance.

Returns:
 A LAYERINSTANCE object that represents a table model object.

gredom.get_screen

gredom.get_screen(screen)

Get a SCREEN object for the model object matching the fully qualified name. If the parameter is a DO-
MOBJECT, this function behaves as a cast.

Parameters:
 screen The name of a screen model object, or a DOMOBJECT representing a screen.

Returns:
 A SCREEN object that represents a screen model object.

DOMOBJECT
DOMOBJECT is the base class for Lua objects representing Storyboard model objects. All other types,
CONTROL, TABLE, GROUP, LAYER, LAYERINSTANCE, SCREEN extend the base functionality. In
Lua, this class is called gredom#domobject.

DOMOBJECT:get_name

DOMOBJECT:get_name()

Gets the name of the specified DOM Object

Returns:
 The name of the specified DOMOBJECT

DOMOBJECT:get_type

DOMOBJECT:get_type()

Gets the Storyboard type of the specified DOMOBJECT. The type may be one of gredom.APP, gre-
dom.SCREEN, gredom.LAYER, gredom.LAYER_INSTANCE, gredom.GROUP, gredom.CONTROL,
gredom.TABLE, gredom.TEMPLATE.

Returns:

281

Storyboard Lua API

 A the type of the specified DOMOBJECT.

DOMOBJECT:get_parents

DOMOBJECT:get_parents()

Gets the parent DOMOBJECT objects for the specified DOMOBJECT. An array of parents is returned
because in some cases, such as for a layer, there may be more than one parent representation.

Returns:
 An array table containing the parent DOMOBJECT entries.

DOMOBJECT:get_children

DOMOBJECT:get_children()

Gets the child DOMOBJECT objects for the specified DOMOBJECT. This function returns only the model
objects and does not include the variables.

Returns:
 An array table containing the child DOMOBJECT entries

DOMOBJECT:get_variables

DOMOBJECT:get_variables()

Gets variables associated with the specified DOMOBJECT

Returns:
 An array table containing the variables associated with this object.

DOMOBJECT:get_value

DOMOBJECT:get_value(
 key
 [, key2, ...]
)

Gets one or more values from the data manager. Each argument to the function should be a key relative
to the DOMOBJECT. The keys are fully qualified before being used as a data manager key whose value
should be extracted from the data manager. This function returns multiple values if multiple parameters
are provided.

Parameters:
 key A relative key, to be fully qualified in the context of this DOMOBJECT.

Returns:
 The value associated with the data manager entry for the key, or nil if no entry exists. If multiple

282

Storyboard Lua API

 keys are specified, then multiple return values will be generated matching the argument order.

DOMOBJECT:get_data

DOMOBJECT:get_data(
 key
 [, key2, ...]
)

Gets one or more values from the data manager. Each argument to the function should be a key relative
to the DOMOBJECT. The keys are fully qualified before being used as a data manager key whose value
should be extracted from the data manager. This function returns a table using all the keys as indexes and
the corresponding value is the data returned from the data manager. A nil is returned for any values that
do not match a key in the data manager.

Parameters:
 key A relative key, to be fully qualified in the context of this DOMOBJECT.

Returns:
 A table containing the passed in arguments as keys and the resulting data manager values as
 the values associated with those keys.

DOMOBJECT:set_value

DOMOBJECT:set_value(
 key,
 value
 [, key2, value2, ...]
)

Sets one or more values in the data manager. Each key should be relative to the DOMOBJECT. The keys
are fully qualified before being used as a data manager key.

Parameters:
 key A relative key, to be fully qualified in the context of this DOMOBJECT
 value The value to be assigned

DOMOBJECT:set_data

DOMOBJECT:set_data(
 table
)

Sets one or more items in the Storyboard application's data manager. Each key should be relative to the
DOMOBJECT. The keys are fully qualified before being used as a data manager key.

Parameters:
 table A table containing the variable to change as the relative key and the value to change it to as the fully qualified key's value.

DOMOBJECT:key

DOMOBJECT:key(

283

Storyboard Lua API

 name
)

Get a fully qualified key from a key that is relative to the DOMOBJECT. This function does not ensure
that the fully qualified key is valid.

string.format("%s.%s, DOMOBJECT:get_name(), name)

Parameters:
 name A string containing a relative key, to be fully qualified in the context of this DOMOBJECT

Returns:
 A fully qualified string.

CONTROL
CONTROL is the class for Lua objects that represent Storyboard control model objects. CONTROL ex-
tends DOMOBJECT so objects of this type can also invoke all the functions of DOMOBJECT. In Lua,
this class is called gredom#control.

CONTROL:get_x

CONTROL:get_x()

Returns:
 The grd_x value of this control

CONTROL:get_y

CONTROL:get_y()

Get the value of grd_y for this control.

Returns:
 The grd_y value of this control

CONTROL:get_width

CONTROL:get_width()

Get the value of grd_width for this control.

Returns:
 The grd_width value of this control

CONTROL:get_height

CONTROL:get_height()

Get the value of grd_height for this control.

284

Storyboard Lua API

Returns:
 The grd_height value of this control

CONTROL:get_position

CONTROL:get_position()

Get the value of grd_x and grd_y for this control.

Returns:
 The grd_x value of this control
 The grd_y value of this control

CONTROL:get_size

CONTROL:get_size()

Get the value of grd_width and grd_height for this control.

Returns:
 The grd_width value of this control
 The grd_height value of this control

CONTROL:get_bounds

CONTROL:get_bounds()

Get the value of grd_x, grd_y, grd_width and grd_height for this control.

Returns:
 The grd_x value of this control
 The grd_y value of this control
 The grd_width value of this control
 The grd_height value of this control

CONTROL:get_hidden

CONTROL:get_hidden()

Get the value of grd_hidden for this control.

Returns:
 The grd_hidden value of this control

CONTROL:set_x

CONTROL:set_x(
 x,
 [anchor]
)

Set the value of grd_x for this control to the provided value.

285

Storyboard Lua API

Optional anchors can allow for automatic adjustment of x values to keep the control anchored in the desired
position as the control's size change:

Optional anchor allow for automatic adjustment of x value:

Horizontal:

• grd.LEFT anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the x input by half the control width.

• grd.RIGHT anchor will adjust the x input by the full control width.

Parameters:
 x An integer value to set to grd_x of this control
 anchor Horizontal anchor: gre.LEFT, gre.CENTER, gre.RIGHT (Optional, default is gre.LEFT)

CONTROL:set_y

CONTROL:set_y(
 y,
 [anchor]
)

Set the value of grd_y for this control to the provided value.

Optional anchor allow for automatic adjustment of y value:

Vertical:

• grd.TOP anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the y input by half the control height.

• grd.BOTTOM anchor will adjust the y input by the full control height.

Parameters:
 y An integer value to set to grd_y of this control
 anchor Vertical anchor: gre.TOP, gre.CENTER, gre.BOTTOM (Optional, default is gre.TOP)

CONTROL:set_width

CONTROL:set_width(
 width,
 [anchor]
)

Set the value of grd_width for this control to the provided value

Optional anchors can allow for automatic adjustment of the control's x to keep the control anchored in the
desired position as the control's width change:

Horizontal:

• grd.LEFT anchor will not adjust the control's x position. This is the default behavior.

286

Storyboard Lua API

• grd.CENTER anchor will adjust the control's x position by half the difference in control width.

• grd.RIGHT anchor will adjust the control's x position by the difference in control width.

Parameters:
 width An integer value to set to grd_width of this control
 anchor Horizontal anchor: gre.LEFT, gre.CENTER, gre.RIGHT (Optional, default is gre.LEFT)

CONTROL:set_height

CONTROL:set_height(
 height,
 [anchor]
)

Set the value of grd_height for this control to the provided value

Optional anchors can allow for automatic adjustment of the control's y to keep the control anchored in the
desired position as the control's height change:

Vertical:

• grd.TOP anchor will not adjust the control's y position. This is the default behavior.

• grd.CENTER anchor will adjust the control's y position by half the difference in control height.

• grd.BOTTOM anchor will adjust the control's y position the difference in control height.

Parameters:
 height An integer value to set to grd_height of this control
 anchor Vertical anchor: gre.TOP, gre.CENTER, gre.BOTTOM (Optional, default is gre.TOP)

CONTROL:set_position

CONTROL:set_position(
 x,
 y,
 [ah],
 [av]
)

Set the value of grd_x and grd_y for this control to the provided values

Optional anchor allow for automatic adjustment of y and values:

Horizontal:

• grd.LEFT anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the x input by half the control width.

• grd.RIGHT anchor will adjust the x input by the full control width.

Vertical:

287

Storyboard Lua API

• grd.TOP anchor will not adjust the input. This is the default behavior.

• grd.CENTER anchor will adjust the y input by half the control height.

• grd.BOTTOM anchor will adjust the y input by the full control height.

Parameters:
 x An integer value to set to grd_x of this control
 y An integer value to set to grd_y of this control
 ah Horizontal anchor: gre.LEFT, gre.CENTER, gre.RIGHT (Optional, default is gre.LEFT)
 av Vertical anchor: gre.TOP, gre.CENTER, gre.BOTTOM (Optional, default is gre.TOP)

CONTROL:set_size

CONTROL:set_size(
 width,
 height,
 [ah],
 [av]
)

Set the value of grd_width and grd_height for this control to the provided values

Optional anchors can allow for automatic adjustment of the control's x and y to keep the control anchored
in the desired position as the control's size changes:

Horizontal:

• grd.LEFT anchor will not adjust the control's x position. This is the default behavior.

• grd.CENTER anchor will adjust the control's x position by half the difference in control width.

• grd.RIGHT anchor will adjust the control's x position by the difference in control width.

Vertical:

• grd.TOP anchor will not adjust the control's y position. This is the default behavior.

• grd.CENTER anchor will adjust the control's y position by half the difference in control height.

• grd.BOTTOM anchor will adjust the control's y position the difference in control height.

Parameters:
 width An integer value to set to grd_width of this control
 height An integer value to set to grd_height of this control
 ah Horizontal anchor: gre.LEFT, gre.CENTER, gre.RIGHT (Optional, default is gre.LEFT)
 av Vertical anchor: gre.TOP, gre.CENTER, gre.BOTTOM (Optional, default is gre.TOP)

CONTROL:set_bounds

CONTROL:set_bounds(
 x,
 y,

288

Storyboard Lua API

 width,
 height
)

Set the value of grd_x, grd_y, grd_width and grd_height for this control to the provided values

Parameters:
 x An integer value to set to grd_x of this control
 y An integer value to set to grd_y of this control
 width An integer value to set to grd_width of this control
 height An integer value to set to grd_height of this control

CONTROL:set_hidden

CONTROL:set_hidden(
 hidden
)

Set the value of grd_hidden to the provided value.

Parameters:
 hidden An integer value to set to grd_hidden of this control

CONTROL:hide

CONTROL:hide()

Set the value of grd_hidden for this control to 1.

CONTROL:show

CONTROL:show()

Set the value of grd_hidden for this control to 0.

CONTROL:clone

CONTROL:clone(
 new_object_name,
 parent_name,
 data
)

Create a new control (new_object_name), within an existing parent layer or group (parent_name) by copy-
ing all of the properties of this control. This new object will have all of the same actions, variables and
it's current state will match the state of this control.

• Controls and tables can be cloned into either layer or group parents as long as no name conflict exists.

The data argument is a table of properties that match the properties for that type of object as described in
the gre.set_control_attrs or gre.set_table_attrs functions as applicable.

289

Storyboard Lua API

Parameters:
 new_object_name The name for the new object, this must be a unique name in the parents namespace
 parent_name The name of the layer or group to place this object within, this object must exist
 data Optional: A table containing control attribute tags as the keys with new values to be applied.
Returns:
 A CONTROL object representing the newly created control.

CONTROL:delete

CONTROL:delete()

Delete this control. This function only works on controls that were created as clones of other controls.

TABLE
TABLE is the class for Lua objects that represent Storyboard table model objects. TABLE extends CON-
TROL so objects of this type can also invoke all the functions of CONTROL and DOMOBJECT. In Lua,
this class is called gredom#tablecontrol.

TABLE:get_rows

TABLE:get_rows()

Get the value of grd_rows for this table.

Returns:
 The grd_rows value of this table

TABLE:get_cols

TABLE:get_cols()

TABLE:cell_key

TABLE:cell_key(
 row,
 col,
 name
)

Get a fully qualified key from a name that is relative to the TABLE object. This function does not ensure
that the fully qualified key is valid. Equivalent to:

string.format("%s.%d.%d.%s, TABLE:get_name(), row, col, name)

Parameters:
 row The row
 col The column
 name A string containing a relative key, to be fully qualified in the context of this TABLE

Returns:
 A fully qualified string.

290

Storyboard Lua API

GROUP
GROUP is the class for Lua objects that represent Storyboard group model objects. GROUP extends DO-
MOBJECT so objects of this type can also invoke all the functions of DOMOBJECT. In Lua, this class
is called gredom#group.

GROUP:get_x

GROUP:get_x()

Get the value of grd_x for this group.

Returns:
 The grd_x value of this group

GROUP:get_y

GROUP:get_y()

Get the value of grd_y for this group.

Returns:
 The grd_y value of this group

GROUP:get_hidden

GROUP:get_hidden()

Get the value of grd_hidden for this group.

Returns:
 The grd_hidden value of this group

GROUP:set_x

GROUP:set_x(
 x
)

Set the value of grd_x for this group.

Parameters:
 x The grd_x value of this group

GROUP:set_y

GROUP:set_y(
 y
)

Set the value of grd_y for this group.

291

Storyboard Lua API

Parameters:
 y The grd_y value of this group

GROUP:set_hidden

GROUP:set_hidden(
 hidden
)

Set the value of grd_hidden for this group.

Parameters:
 hidden The grd_hidden value of this group

GROUP:hide

GROUP:hide()

Set the value of grd_hidden for this group to 1.

GROUP:show

GROUP:show()

Set the value of grd_hidden for this group to 0.

GROUP:clone

GROUP:clone(
 name,
 parent,
 data
)

Create a new group (new_object_name), within an existing parent layer (parent_name) by copying all of
the properties and children of this group. This new object will have all of the same actions, variables and
it's current state will match the state of this control. All of the reference group's controls will be cloned
into the new group.

The data argument is a table of properties that match the properties for that type of object as described in
the gre.set_group_attrs function.

Parameters:
 new_object_name The name for the new object, this must be a unique name in the parents namespace
 parent_name The name of the layer to place this object within, this object must exist
 data Optional: A table containing group attribute tags as the keys with new values to be applied.
Returns:
 A GROUP object representing the newly created group.

GROUP:delete

GROUP:delete()

292

Storyboard Lua API

Delete this group. This function only works on group that were created as clones of other controls.

LAYERINSTANCE
LAYERINSTANCE is the class for Lua objects that represent Storyboard layer instance model objects.
LAYERINSTANCE extends DOMOBJECT so objects of this type can also invoke all the functions of
DOMOBJECT. In Lua, this class is called gredom#layerinstance.

LAYERINSTANCE:get_layer

LAYERINSTANCE:get_layer()

Get the LAYER for this layer instance's layer.

Returns:
 a LAYER object representing this layer instance's layer

LAYERINSTANCE:get_x

LAYERINSTANCE:get_x()

Get the value of grd_x for this layer instance.

Returns:
 The grd_x value of this layer instance

LAYERINSTANCE:get_y

LAYERINSTANCE:get_y()

Get the value of grd_y for this layer instance.

Returns:
 The grd_y value of this layer instance

LAYERINSTANCE:get_width

LAYERINSTANCE:get_width()

Get the value of grd_width for the layer instance's layer.

Returns:
 The grd_width value of this layer instance's layer

LAYERINSTANCE:get_height

LAYERINSTANCE:get_height()

Get the value of grd_height for this layer instance's layer.

Returns:

293

Storyboard Lua API

 The grd_height value of this layer instance's layer

LAYERINSTANCE:get_position

LAYERINSTANCE:get_position()

Get the value of grd_x and grd_y for this layer instance.

Returns:
 The grd_x value of this layer instance
 The grd_y value of this layer instance

LAYERINSTANCE:get_size

LAYERINSTANCE:get_size()

Get the value of grd_width and grd_height for this layer instance's layer.

Returns:
 The grd_width value of this layer instance's layer
 The grd_height value of this layer instance's layer

LAYERINSTANCE:get_bounds

LAYERINSTANCE:get_bounds()

Get the value of grd_x, grd_y, grd_width and grd_height for this layer instance

Returns:
 The grd_x value of this layer instance
 The grd_y value of this layer instance
 The grd_width value of this layer instance's layer
 The grd_height value of this layer instance's layer

LAYERINSTANCE:get_alpha

LAYERINSTANCE:get_alpha()

Get the value of grd_alpha for this layer instance.

Returns:
 The grd_alpha value of this layer instance

LAYERINSTANCE:get_hidden

LAYERINSTANCE:get_hidden()

Get the value of grd_hidden for this layer instance.

Returns:
 The grd_hidden value of this layer instance

294

Storyboard Lua API

LAYERINSTANCE:set_x

LAYERINSTANCE:set_x(
 x
)

Set the value of grd_x for this layer instance to the provided value.

Parameters:
 x An integer value to set to grd_x of this layer instance

LAYERINSTANCE:set_y

LAYERINSTANCE:set_y(
 y
)

Set the value of grd_y for this layer instance to the provided value.

Parameters:
 y An integer value to set to grd_t of this layer instance

LAYERINSTANCE:set_width

LAYERINSTANCE:set_width(
 width
)

Set the value of grd_width for this layer instance to the provided value.

Parameters:
 width An integer value to set to grd_width of this layer instance

LAYERINSTANCE:set_height

LAYERINSTANCE:set_height(
 height
)

Set the value of grd_height for this layer instance to the provided value.

Parameters:
 height An integer value to set to grd_height of this layer instance

LAYERINSTANCE:set_position

LAYERINSTANCE:set_position(
 x,
 y
)

295

Storyboard Lua API

Set the value of grd_x and grd_y for this layer instance to the provided values.

Parameters:
 x An integer value to set to grd_x of this layer instance
 y An integer value to set to grd_y of this layer instance

LAYERINSTANCE:set_size

LAYERINSTANCE:set_size(
 width,
 height
)

Set the value of grd_width and grd_height for this layer instance's layer to the provided values.

Parameters:
 width An integer value to set to grd_x of this layer instance's layer
 height An integer value to set to grd_height of this layer instance's layer

LAYERINSTANCE:set_bounds

LAYERINSTANCE:set_bounds(
 x,
 y,
 width,
 height
)

Set the value of grd_x, grd_y, grd_width and grd_height for this layer instance to the provided value.

Parameters:
 x An integer value to set to grd_x of this layer instance
 y An integer value to set to grd_y of this layer instance
 width An integer value to set to grd_width of this layer instance's layer
 height An integer value to set to grd_height of this layer instance's layer

LAYERINSTANCE:set_alpha

LAYERINSTANCE:set_alpha(
 alpha
)

Set the value of grd_alpha for this layer instance to the provided value.

Parameters:
 alpha An integer value to set to grd_alpha of this layer instance

LAYERINSTANCE:set_hidden

LAYERINSTANCE:set_hidden(
 hidden

296

Storyboard Lua API

)

Set the value of grd_hidden for this layer instance to the provided value.

Parameters:
 hidden An integer value to set to grd_hidden of this layer instance

LAYERINSTANCE:hide

LAYERINSTANCE:hide()

Set the value of grd_hidden for this layer instance to 1.

LAYERINSTANCE:show

LAYERINSTANCE:show()

Set the value of grd_hidden for this layer instance to 0.

Lua DOM Samples

-- Print a list of all of the user variables associated with a
-- specified control
function print_variables(control_name)
 -- Get the DOM object for the control name passed in
 local domObject = gredom.get_object(control_name)
 if(domObject == nil) then
 print("Can't find name for " .. tostring(control_name))
 return
 end

 -- Get the variables defined on this DOM object
 local vars = domObject:get_variables()
 if(vars == nil or #vars == 0) then
 print("No variables for " .. control_name)
 else
 print("Variables for " .. control_name)
 for i=1,#vars do
 print("# " .. tostring(vars[i]))
 end
 end
end

-- Print out all of the screens where this control's container layer is
-- being used
function print_used_on_screens(control_name)
 -- Get the DOM object for the control name passed in
 local domObject = gredom.get_object(control_name)
 if(domObject == nil) then
 print("Can't find name for " .. tostring(control_name))
 return
 end

297

Storyboard Lua API

 -- Build up the full path to this object
 -- Walk up the tree looking at all parents adding screens we find
 local screen_list = {}
 local parent_list = {}
 table.insert(parent_list, domObject:get_parents())

 local i = 1
 while i <= #parent_list do
 local parents = parent_list[i]
 for p=1,#parents do
 -- If this was a screen, add it to our collection
 if parents[p]:get_type() == gredom.SCREEN then
 screen_list[parents[p]] = true
 else
 -- If this has parents of its own,
 -- then add them to the search list
 parents = parents[p]:get_parents()
 if(parents ~= nil and #parents > 0) then
 table.insert(parent_list, parents)
 end
 end
 end
 i = i + 1
 end

 -- Print out all of the screens that we have identified
 print(control_name .. " is used on the following screens:")
 for screen,v in pairs(screen_list) do
 print("# " .. screen:get_name())
 end
end

-- Invoke our DOM example functions with the context control
function CBDom(mapargs)
 print_used_on_screens(mapargs.context_control)
 print_variables(mapargs.context_control)
end

298

Appendix B. Storyboard IO API
Storyboard IO API

The details the functions available in the Storyboard IO library, libgreio.a, are also documented in
the Storyboard IO header file gre/greio.h>.

gre_io_add_mdata

int gre_io_add_mdata(
 gre_io_serialized_data_t ** mbuffer,
 const char * key_name,
 const char * data_format,
 const void * data,
 int data_nbytes
)

Add a data change key/value pair to a serialized buffer. This call can be used to serialize multiple data
changes into a single Storyboard IO send operation to improve efficiency.

Once an multi-part data buffer is constructed, it can be sent using the gre_io_send_mdata function.

Parameters:
 buffer The buffer containing the serialized data
 key_name The data key which is to be set
 data_format The format for the data to be set
 data The data value to set
 data_nbytes The number of bytes used for the data

Returns:
 -1 on failure anything else is success

gre_io_close

void gre_io_close(
 gre_io_t * handle
)

Close an io connection. Any pending clients will return with an error on their pending actions. This
call should be serialized with other clients that are referencing the same gre_io_t handle to avoid race
conditions. A common technique for closing handles where a receiving thread may be blocked on the
handle is to generate a termination event and have the receiving thread perform the close and channel
cleanup.

Parameters:

299

Storyboard IO API

 handle A valid handle created with gre_io_open()

gre_io_free_buffer

void gre_io_free_buffer(
 gre_io_serialized_data_t * buffer
)

This de-allocates the memory associated with a buffer created through the Storyboard IO API.

Parameters:
 buffer The buffer whose memory is to be de-allocated

gre_io_grow_buffer

void gre_io_grow_buffer(
 gre_io_t* handle,
 gre_io_serialized_data_t * buffer
)

This function attempts to expand the internal capacity of the Storyboard IO transport to ensure that the
payload contained within serialized buffer can be transmitted.

Note

This call is not supported by all platforms and may fail if the transport buffer can not be resized.

Parameters:
 handle The handle to the Storyboard IO channel to resize
 buffer The buffer whose capacity is to be matched by the transport

Returns:
 -1 on failure otherwise success

gre_io_open

gre_io_t* gre_io_open(
 const char * io_name,
 int flag,
 ...
)

Open a Storyboard IO communication channel using a named connection.

300

Storyboard IO API

Parameters:
 io_name The name of the io-channel to use
 flags The mode you want to open the queue in
 Flags define how the connection is opened. Possible flags are:
 GRE_IO_TYPE_RDONLY: open read only, creating the channel if it doesn't exist
 GRE_IO_TYPE_XRDONLY: open for exclusive read, unlinking an existing channel and creating a new one
 GRE_IO_TYPE_WRONLY: open write only
 GRE_IO_FLAG_NONBLOCK: open non-blocking

Returns:
 Returns a valid Storyboard IO handle or NULL if no channel can be created.

gre_io_receive

int gre_io_receive(
 gre_io_t * handle,
 gre_io_serialized_data_t ** buffer
)

Receive a serialized event from a channel. By default this call blocks until an event is received
or until the channel is destroyed unless the GRE_IO_FLAG_NONBLOCK flag was passed to the
gre_io_open()call.

In order to receive events, the handle must have been opened for reading using one of GRE_IO_RDONLY
or GRE_IO_XRDONLY.

Parameters:
 handle A valid handle created with gre_io_open()
 buffer A pointer to a serialized buffer pointer. If the buffer is NULL then a new
 buffer is allocated otherwise the buffer provided is used to store the received event.

Returns:
 The size of the message received in bytes or -1 on failure.

When a data buffer is successfully received, the event specific content can be extracted by making a call
to gre_io_unserialize. The values returned by the unserialize call will be pointers directly into
the memory allocated to the data buffer. Clients can read and write to the extracted values (such as event
name, event format and data payload) directly as long as the serialized buffer is not re-used at the same
time. Any data from the event that needs to be maintained across calls to gre_io_receive must be
copied by the user before the serialized buffer is re-used.

gre_io_send

int gre_io_send(
 gre_io_t * handle,
 gre_io_serialized_data_t * buffer
)

301

Storyboard IO API

Send a serialized event buffer to a channel. In order to send events, the handle must have been opened
for writing using GRE_IO_WRONLY.

Parameters:
 handle A valid handle created with gre_io_open()
 buffer A data buffer containing a serialized event

Returns:
 -1 on failure otherwise success.

gre_io_send_mdata

int gre_io_send_mdata(
 gre_io_t * handle,
 gre_io_serialized_data_t * md_buffer
)

Send a serialized buffer of mdata (data manager key/value pairs) to the handle. The handle must have been
opened for writing using GRE_IO_WRONLY.

Parameters:
 handle A valid handle created with gre_io_open()
 buffer A data buffer containing a serialized data

Returns:

 -1 on failure anything else is success

gre_io_serialize

gre_io_serialized_data_t* gre_io_serialize(
 gre_io_serialized_data_t * buffer,
 const char * event_target,
 const char * event_name,
 const char * event_format,
 const void * event_data,
 int event_nbytes
)

Serialize individual event items (see gre/io_mgr.h) into a single buffer for transmission using Story-
board IO.

Parameters:
 buffer The buffer that will contain the serialized data or NULL if a new buffer should be allocated

302

Storyboard IO API

 event_target The name of the event target model element (screen,layer, control, render extension),
 or NULL to send to the default target (application level)
 event_name The name of the event to send, or NULL to send an empty event
 event_format The format description of the data (ex. "1s0 string") or NULL if no data is being sent
 event_data A pointer do the data to transmit, or NULL if no data is transmitted
 event_nbytes The number of data bytes to transmit, or NULL if no data is transmitted

Returns:
 A buffer with the serialized data or NULL on error. It may be necessary for the
 internal buffer to be re-sized or re-allocated if the new data payload is larger than the
 previous one is being serialized.

Example:

nbuffer = gre_io_serialize(nbuffer, NULL, "cluster_update",
"2u1 speed 2u1 rpm 2u1 fuel 2u1 battery 2u1 oil 2u1 odometer 2u1 trip",
&event_data, sizeof(event_data));
if(!nbuffer) {
 fprintf(stderr, "Can't serialized data to buffer, exiting\n");
 break;
}

gre_io_size_buffer

gre_io_serialized_data_t* gre_io_size_buffer(
 gre_io_serialized_data_t * buffer,
 int nbytes
)

This function ensures that the specified buffer has enough internal storage capacity for a payload of nbytes
size. If the buffer is NULL or the existing capacity is not large enough then a new memory buffer will
be assigned to the buffer object.

Data parameters must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0
is good, 2u1 4u1 4u1 1s0 is not

Parameters:
 buffer The buffer to be sized, or NULL to allocate a new buffer
 nbytes The number of bytes this buffer should be able to support

Returns:
layer_name
 A buffer with room for a message nbytes in size or NULL if the space could not be allocated

gre_io_unserialize

int gre_io_unserialize(
 gre_io_serialized_data_t * buffer,

303

Storyboard IO API

 char ** event_target,
 char ** event_name,
 char ** event_format,
 void ** event_data
)

Transform a serialized buffer into individual event items (see gre/io_mgr.h). The pointers returned
point back into the content of the serialized buffer so the buffer can't be de-allocated until clients are
finished referencing the event items returned from this call.

Data parameters must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0
is good, 2u1 4u1 4u1 1s0 is not

Parameters:
 buffer The buffer containing the serialized data
 event_target Location to store the event target model element
 event_name Location to store the event name
 event_format Location to store the event format
 event_data Location to store the event data

Returns:
 The number of bytes in the event_data structure

gre_io_zero_buffer

void gre_io_zero_buffer(
 gre_io_serialized_data_t * buffer
)

This clears the internal byte count of the buffer, but does not de-allocate the buffer's memory.

Use this function to reset a buffer in between multiple calls to gre_io_serialize

Parameters:
 buffer The buffer to have its byte count cleared

gre_io_get_error_codes

void gre_io_get_error_codes(
 gre_io_t *handle, gre_io_error_t *errorcodes
)

This gets the error codes if greio experiences an error.

Parameters:
 handle A valid handle created with gre_io_open()

304

Storyboard IO API

 errorcodes A valid gre_io_error_t structure to be filled out

gre_io_get_error_message

const char * gre_io_get_error_message(
 gre_io_error_t *errorcodes
)

This gets the error message for an error code returned by a call to gre_io_get_error_codes.

Parameters:
 errorcodes A valid gre_io_error_t structure containing the errors returned from a call
 to gre_io_get_error_codes

Returns:
 The error message.

305

Appendix C. Storyboard Engine and
Plugin Options

Storyboard Engine Plugin Options
The Storyboard product ships with a standard set of plugins which add functionality to the system. Plugins
are loaded based on the SB_PLUGINS environment variable. This variable can be a directory where all
plugins are loaded from or a “;” separated list of plugins. Some plugins have options that can be passed via
the command line to the plugin. To pass on option to a plugin use the -o option to sbengine in this format:

sbengine [[-oplugin_name,plugin_option[[,plugin_option2,...]]] your_app.gapp

Table C.1. Plugin Options

PLUGIN OPTION DESCRIPTION

Plugin Name: io_mgr (-oio_mgr,...)

no_compression=[size] Disable event compression in the event queue. By
default Storyboard will compress gre.motion and
gre.mtevent events in order to reduce input lag and
flooding of the event queue with motion events.

Disable compression to receive a higher fidelity
stream of motion events from Storyboard.

queue_size=[size] 4096 will limit the event queue size to a maxi-
mum of 4K for example. If the queue exceeds this
size, events will be dropped and diagnostic mes-
sages will be logged regarding the dropped events.
The default behavior is to have an unlimited event
queue size.

Plugin Name: model_mgr (-omodel_mgr,...)

block_sbio_sends[=0|1][integer] By default (value of 0) Storyboard IO channels
opened for writing will be opened with a non-
blocking flag and if a queue gets full a warning
will be generated and, if Lua is being used, an er-
ror will be returned. Setting this parameter to 1
will enable blocking behaviour when a queue is
full which may have adverse effects on the usabili-
ty and interactiveness of the UI but aligns with his-
torical defaults of earlier versions of Storyboard.

fps=[integer] Limits the frame rate for all animations to a maxi-
mum fps specified (25 for example).

mem_stats=1 On platforms where process/task memory usage or
heap allocator memory usage values are available,
report them as performance log metrics. The val-
ue should be set to 1 to enable the reporting of the
memory statistics at app initialization and at appli-
cation termination. Future values are reserved.

306

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

If the metrics plugin is present and this option is
present and loaded then this option will also gen-
erate a cost estimate of the curent application's in-
memory structure cost which can be used within
Storyboard Designer to estimate the RAM foot-
print of the application at design time.

plugin_path=[path] Sets the plugin path to the specified directory
(/temp for example). This setting overrides the
SB_PLUGINS environment variable setting.

scroll_drag_px The number of pixels that need to be moved before
a scrollable container considers this a scroll opera-
tion (default 10).

scroll_bounce_ms The number of milliseconds that the bounce op-
eration on a scrollable container should animate
once the bounce back is operation is started (de-
fault 200ms).

scroll_bounce_rate The animation rate that should be used on a scrol-
lable container for bounce back animations (de-
fault easein).

Plugin Name: font_mgr (-ofont_mgr,...)

linegap=[0|1] This option controls if the Storyboard Engine in-
cludes the line gap information (linegap=1 default)
when positioning text for rendering or if it only in-
cludes the ascender information (linegap=0). The
default value is to include the linegap information.

Plugin Name: render_mgr (-orender_mgr,...)

x=[xpos] This will position the application at the defined x-
position.

y=[ypos] This will position the application at the defined y-
position.

sysdpi This will enable the window upscaling performed
by Windows according to the system DPI setting.

PLATFORM: Windows, OpenGL, swrender, x86

dblbuffer Enable double buffering (fullscreen redraws)

PLATFORM: Linux, x86, armle, swrender

display=[index] Connect to the given display index, this option is
only available for the QNX Screen OpenGL and
software render managers or the Linux i.MX6
OpenGL render manager where the value is the se-
lected framebuffer index.

fb=[x] This option pertains specifically to iMX6 hardware
platforms. Starting at 0, x defines the framebuffer
number to render to.

PLATFORM: Linux, swrender

307

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

fullscreen Run in fullscreen mode.

rotate=[90|180|270] Rotate the application by the defined angle.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, x86, armle, OpenGL, swrender

rle_blit=[x] Decode RLE compressed images directly to frame-
buffer surface memory in order to remove need
for temporary decode buffer. Only available for 32
bits per pixel source images with No Scaling and
No Rotation. This option pertains to swrender on
RTExec platforms. Set x = 1 (default) to enable
RLE blit; x = 0 is not enabled.

PLATFORM: armle, RTExec, Storyboard Lite,
swrender

quality=[0|1|2] Visual fidelity of image rotation rendering. A val-
ue of 0 emphasizes speed at the cost of visually
fidelity. A value of 2 provides the highest visual
fidelity, with a potential impact on performance.
The default value is set to 1.

dumpconfig Dump the layer and graphics configuration infor-
mation at startup.

PLATFORM: Linux, x86, armle, swrender

layer=[index] Set the directfb layer index that content will render
to (default=0)

PLATFORM: Linux, x86, armle, swrender

multisample=[value] Indicates the degree of multisampling which af-
fects the visual smoothness of edges. For exam-
ple, a value of 4 would be 4x multisampling while
0 would be no multisampling. By default, this val-
ue is set dynamically based on the model content
that is being interpreted in order to provide the best
balance between high performance and high qual-
ity rendering. If your model contains 3D models,
polygons or circles then multi-sampling is turned
on to a level of 4, otherwise it is off. The command
line option setting will override the default probing
and ensure a fixed value.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

vbo Enables the use of vertex buffer objects.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

scale=[aspect] Scale the application to the physical display size.
If aspect is passed the application will retain the
proper aspect ratio when scaled.

308

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

backbuffer Render the scene using a damage rectangle. On
some OpenGL ES implementations this will give
better performance but will use more memory as it
has to allocate a separate display buffer.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

npot Disable power-of-two texture allocations. By de-
fault the OpenGL ES API is queried to check for
NPOT texture support. This option can be used to
override this behavior and force support. NPOT
textures will use less memory for image data.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

fontsize=[size] Specify the size of the font texture sheet. Fonts
are generated into sheets and the default size is
512x512. The number of glyphs put into the sheet
is a function of the point size and the texture size.
This option can be used to tune the number of
available glyphs and the memory usage.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

window_w=[w] Scale the application content and window to the
specified width. This option is only valid on desk-
top systems which use a window manager. This
option must be used along with 'window_h'

PLATFORM: Windows, Windows CE 2013, ma-
cOS, Linux, QNX, x86, armle, OpenGL

window_h=[h] Scale the application content and window to the
specified height. This option is only valid on desk-
top systems which use a window manager. This
option must be used along with 'window_w'

PLATFORM: Windows, Windows CE 2013, ma-
cOS, Linux, QNX, x86, armle, OpenGL

linejoin=[0|1] Set line join style for path drawing, drawing joins
can have a performance impact on frame rate.
0=none, 1=round (default=1)

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

clipmode=[stencil|scissor] Set the clipping mode to use, may have perfor-
mance impacts. Each implementation defaults to
the best performance.

309

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

error_event An error event is generated for OpenGL render er-
rors. Image and font errors will identify the image
and font related to the error.

zorder=[z] When using the QNX Screen engine this will posi-
tion the application window at the defined Z index.

clearcolor=[color] Specify the clear color to be used for the Win-
dow Surface. The color format is ARGB and spec-
ified in hexadecimal. The default clear color is
0x00000000. This option can be used for debug-
ging purposes.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

image_block_size=[number] This specifies the memory size of the shared
blocks that are used within the image cache. These
settings override the generic block_size setting that
is used generically for the atlas and are bound by
the -oresource_mgr,image setting.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

font_block_size=[number] This specifies the memory size of the shared
blocks that are used within the font glpyh cache.
These settings override the generic block_size set-
ting that is used generically for the atlas and are
bound by the -oresource_mgr,font setting.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

block_size=[-1|0|>0] Specify how block size should be determined
for growing the image atlas. For -1, a degenerate
block size will be used, forcing block size to that
of a single image. For 0, the block size is rounded
up to the nearest power of two for an image's di-
mensions. For any value greater than zero, block
allocations will be rounded up to the size specified.
(default=1024)

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

surface_cache=[-1(default)|0|>0] Specify the surface cache control. For -1, the sur-
face cache will grow unbounded (default). For 0,
the surface cache will be disabled. For any value
greater than zero, it will be used as the upper limit
on the number of surfaces in the surface cache.

PLATFORM: Windows CE 2013, macOS, Linux,
QNX, armle, OpenGL

310

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

mainlayer=[number] The main layer to use for rendering, defaults to
layer 0

PLATFORM: Linux, QNX, armle

dumpcaps Print the device capabilities and acceleration flags.

PLATFORM: Windows CE 2013, armle

nohwcursor Disables the HW cursor.

PLATFORM: Windows CE 2013, armle

Plugin Name: resource_mgr (-oresource_mgr,...)

error=[0|1] When a resource error is encountered a diagnos-
tic message is generated. This option controls if
an event for the error is sent (1, default) or not
sent (0). This option is currently only enabled for
OpenGL render managers.

font=[number] Similar to the image resource option, this val-
ue controls the number of bytes of memory allo-
cated for the font glyph cache. After the cache is
full, the behaviour of the allocations is controlled
via the font_oom option. A value of 0 (default
setting) indicates that the font glyph cache should
be limited by the size of available system memo-
ry. Otherwise a positive value indicates the size of
the cache in bytes and can be symbolically speci-
fied using K, M qualifiers such as 4K to indicate an
font glpyh cache of 4096 bytes or 1M to indicate
1048576 bytes of memory.

image=[number] This will set the maximium number of bytes in the
image cache. After the cache is full, the behaviour
for allocations is controlled via the image_oom
option. A value of 0 (default setting) indicates that
the image cache should be limited by the size of
available system memory. A value of -1 indicates
no image cache and only one image at a time will
be loaded and that image not cached. Otherwise
a positive value indicates the size of the cache in
bytes and can be symbolically specified using K,
M qualifiers such as 4K to indicate an image cache
of 4096 bytes or 1M to indicate 1048576 bytes of
memory.

image_oom=[fail|lru] This sets the behaviour when the maximum value
of the image cache is reached. If this is set to the
value fail then when an allocation can't be ful-
filled the request will fail. If this is set to the val-
ue lru then when an allocation can't be fulfilled
the request will attempt to remove other entries
from the cache until it can either fit the request or
it fails. The default behaviour is lru.

311

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

Plugin Name: screen_mgr (-oscreen_mgr,...)

dl=[1] Disable the use of a particular hardware layer.

fps Display the frames per second of the display up-
dates in the Storyboard Engine console output and
also set the grd_fps variable with the calculated
value.

overlay Allow the application to be run as an overlay and
show the content below. This only functions on
particular render managers and if the application
has a transparent background.

redraw_complete Generate a completed event for every screen up-
date.

swcursor Enables the rendering of a software cursor.

Plugin Name: capture_playback (-ocapture_playback,...) / Shared Library: libgre-plugin-capture-play-
back

capture_events=[eventname] Capture option to define a custom list of events to
capture. Multiple events can be specified by using
the ":" character as a delimiter.

file=[filename] If "capture" is specified as the mode it indicates
the contents of the file specified will be overwrit-
ten with the new event stream.

If "playback" is specified then the contents of
the file specified will be used as an event stream
source.

loop=[count] A playback option that indicates how many times
the playback should iterate through its content.
The default is to playback the content once, other-
wise if a count is specified the plugin will replay
the full content count times.

mode=[capture|playback] Specifies the behavior of the plugin for either play-
back or capture. If capture is specified then input
events (gre.press, gre.release, gre.motion, gre.key-
press etc) will be logged and stored in an ouptut
file.

If playback is specified then the contents of an in-
put file are read and the input events are injected
back into the application.

no_defaults Capture option to specify that there are no default
events set to be captured. By default we capture
the following events:

1 gre.press

2 gre.release

3 gre.keyup

312

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

4 gre.keydown

5 gre.keyup

6 gre.keyrepeat

7 gre.motion

8 gre.mtevent

quit_playback Playback option that indicates if a gre.quit
event should be automatically generated after play-
back is complete. The default is to not generate a
quit event.

verbosity Indicates that the plugin should log events that it
is either capturing or playing back to the standard
output.

Plugin Name: ccallback (-occallback,...)

path Point the ccallback plugin to a dynamic library
(dll/so). Only applies to dynamically linked en-
gines. On statically linked engines, this is not re-
quired.

Plugin Name: dev-input (-odev-input,...) / Shared Library: libgre-plugin-dev-input

kbd=[device] The name of the keyboard device, for example /
dev/input/event1

One of either the mouse or kbd arguments must
be passed to enable this plugin. There are no de-
fault bindings so the full path to the desired input
device must be specified.

mouse=[device] The name of the mouse device, for example /
dev/input/event0

One of either the mouse or kbd arguments must
be passed to enable this plugin. There are no de-
fault bindings so the full path to the desired input
device must be specified.

Plugin Name: gesture (-ogesture,...) / Shared Library: libgre-plugin-gesture

file=[filename] filename is a text file containing custom gesture
definitions. When the gesture plugin is in 'auto'
mode, the gesture plugin will determine if the ap-
plication uses any of the custom gesture events and
enable single touch events.

mode=[disabled|single|multi] By default, sbengine will search your application
for use of any gesture events and gestures will be
enbled as required. This behaviour can be overrid-
den with any of the following mode options:

disabled will not generate any gesture events.

313

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

single allows for generation of single touch ges-
ture events.

multi allows for generation of both single and
multi-touch gesture events.

threshold=[level] Specifying a level allows the user to configure the
sensitivity level which determines if we translate a
motion into a gesture event. By default the thresh-
old is set to 100.

Plugin Name: gfi-input (-ogfi-input,...) / Shared Library: libgre-plugin-gfi-input

mouse=[device] The name of the mouse device, for example /
dev/devi/mouse0

PLATFORM: QNX

rotate=[90|270] If specified, this indicates that the input co-ordi-
nates should be rotated by 90 or 270 degrees.

PLATFORM: QNX

 By default the input system used the gfi interface
based on the devi drivers. The devi driver must
be run with the -P option. If you pass the mouse
option then the mouse/touchscreen is used in raw
mode.

Plugin Name: greio (-ogreio,...) / Shared Library: libgre-plugin-greio

channel=[name] The value specifies the name that the applications
Storyboard IO channel will use. This name can
then be used by gre_io_open or iogen clients
to send events to the application.

In the case of a TCP channel, [name] needs to
have a URI of "tcp://" followed by optional <ip ad-
dress> and optional <channel> or <port number>

queue This flag indicates if the events on the Storyboard
IO channel should be asynchronously queued into
the application's message queue or if a new event
should be added only after the last event has been
processed. The default is to only have one event
being processed by the application at a time.

Plugin Name: logger (-ologger,...) / Shared Library: libgre-plugin-logger

buffer=[bytes] This option will buffer all logging output to an al-
located in-memory buffer and only flush the out-
put when the buffer content is full. The number of
bytes allocated for the buffer are provided by the
option to the argument. If the buffer size is 0 or in-
valid, then 4K will be allocated for the buffer.

data This option enables the logging of data change
events as they occur. The data key that has been
changed is displayed to standard output.

314

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

event=[event_name] This option will enable the generation of a cus-
tom Storyboard event any time that an ERROR
message is detected by the Storyboard Engine log-
ging system. When the error is detected, an event
"event_name" will be sent to the application and
it will contain a payload of "1s0 msg" where the
"msg" is the diagnostic string that would have been
logged.

filter=[keyword] This option enables filtering of events based on
the keyword provided. Multiple keywords can
be specified. Filtered events are delimited by a
':'. sbengine -ologger,io,filter=gre.press:gre.re-
lease Each keyword can also be negated by the
'^' symbol. Therefore we could ignore all motion
events by passing in the following command: -
ologger,io,filter=^gre.motion Filtering applies to
the 'io' and 'data' options. If neither 'io' or 'data' op-
tions are specified, then this option does nothing.

io=[level] This option enables the logging of IO events in
variable levels of verbosity. If no option is speci-
fied then the level will default to 1 and the event
name and its size in bytes will be displayed. If 2 is
specified then the format is displayed. If 3 is spec-
ified then the data payload will be dumped to the
standard output in both hexadecimal and character
formats.

metrics_event_prefix=[prefix] This option specifies the prefix to use in the met-
rics event names. This defaults to metrics.

metrics_output=[0 | 1 | 2 | 3] This option tells the metrics portion of the logger
plugin where to out the metrics data. 0 just updates
the data, and this is the defualt, 1 is used to output
the data to the log, 2 outputs the data to the perfor-
mance log, if the perf option is also specified, and
3 will output the data to both the log and the per-
formance log if the perf option is specified.

output=[filename] This option specifies a path in the file system to di-
rect the Storyboard standard output to. The direc-
tory path to the file must already exist.

+ At the beginning of the file name will append to
the log file, otherwise the file will be overridden
on each invocation of sbengine.

%D in the filename will be replaced by a date
stamp with YYYY-MM-DD format.

%T in the filename will be replaced by a 24h time
stamp with HHMMSS format.

Both %D and %T may be used on the same file-
name.

315

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

A valid command would be: -ologger,out-
put=/logs/log-%D-%T.txt, provided the /logs/ di-
rectory existed prior to runtime.

perf This option enables the logging of performance da-
ta to the standard output (or file if perf_file is
used). If a value of 0 is specified to the perf option
then performance logging is enabled, but the cap-
ture of data is not immediately started and can be
toggled using the gra.perf_state action. If
the value is set to 1 or is not specified, then perfor-
mance data will be immediately captured. For ex-
ample -ologger,perf=1 will enable performance
logging with the immediate capture of perfor-
mance metrics.

perf_buffer=[bytes] This option will buffer all performance logging
output to an allocated in-memory buffer and on-
ly flush the output when the buffer content is full.
The number of bytes allocated for the buffer are
provided by the option to the argument. If the
buffer size is 0 or invalid, then 4K will be allocat-
ed for the buffer.

perf_event_prefix=[prefix] This option specifies the prefix to use in the perf
event name. This defaults to perf.

perf_file=[filename] This option specifies a path in the file system to di-
rect the performance data output to. The directory
path to the file must already exist and the contents
of the file will be overwritten on each invocation
of sbengine.

+ At the beginning of the file name will append to
the log file, otherwise the file will be overridden
on each invocation of sbengine.

%D in the filename will be replaced by a date
stamp with YYYY-MM-DD format.

%T in the filename will be replaced by a 24h time
stamp with HHMMSS format.

Both %D and %T may be used on the same file-
name.

A valid command would be: -ologger,per-
f_file=/logs/perf-%D-%T.plog, provided the /
logs/ directory existed prior to runtime.

perf_filter=[keyword] This option enables filtering of perf types based on
the keyword provided. The sb_Event type cannot
be filtered out. This is because Storyboard engine
is event based, and everything that happens is tied
back to the event that kicked things off. Multiple
keywords can be specified. Filtered types are de-

316

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

limited by a ':'. -ologger,perf,perf_filter=sb_Ren-
derExtension Each keyword can also be negat-
ed by the '^' symbol. Therefor we could ignore all
render extension types by passing in the following
command: -ologger,perf,perf_filter=^sb_Ren-
derExtension Filtering applies to the perf option.

poll_metrics_interval=[ms] This option sets up a timer to fire at the interval
specified by ms. When the timer fires the system
metrics for memory, CPU and FPS will be updat-
ed. See metrics_output to control where the met-
rics output will go.

retailmsg The logger will output using RETAILMSG instead
of sending output to stdio.

PLATFORM: Windows CE 2013

 If performance logging is enabled then the output
is a set of comma separated values (CSV) with the
following fields: PERF, application time, type, op-
eration, name, duration

application time This is the time that the performance event was
finished relative to the start time of the application
in milliseconds.

type This is the type of performance operation that was
recorded as a broad classifier.

operation This is a sub-classification of the type used for ad-
ditional tracing granularity.

name This is an identifier that can be used, along with
the type and operation fields, to identify the con-
text of the performance operation being performed.

duration This is the duration of the operation in millisec-
onds.

slogger=[opcode] This option specifies that sbengine should use the
QNX system logging infrastructure. if no opcode
is given, sbengine will provide an appropriate op-
code.

The opcode is a combination of a major and minor
code. Create the opcode using the _SLOG_SET-
CODE(major, minor) macro that's defined in sys/
slog.h.

This option is only available for systems running
QNX.

sbio=[channel] This option specifies that sbengine should use the
SBIO channel specified as the log content desti-
nation output. The log data will be logged with an
event gre.log and a simple format string 1s0
msg.

317

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

If the channel is not available at start up, an error
will be generated and the logging will revert to the
default logging output. If a channel becomes avail-
able then the logging will switch back to that chan-
nel. If a channel becomes full because no receiver
is pulling the log messages, then this will block the
execution of the Storyboard Engine until content
can be read.

Plugin Name: lua (-olua,...) / Shared Library: libgre-plugin-lua

gc=[0|1] This option is used to minimize the runtime mem-
ory footprint of the Lua script engine by invoking
the Lua garbage collector after every Lua action.
By default this option is set to 0 indicating that
garbage collection will occur at the natural points
specified by Lua's collectgarbage option. If
the value is set to 1, then garbage collection is run
after every Storyboard Lua action invocation, re-
ducing the active runtime memory footprint with a
slight cost to execution performance.

hold=[0|1|2] This option controls how Lua posts data manag-
er change notifications. By default all changes
are held until the end of script execution (1), ex-
cept whenever a local event is sent through the
gre.set_event call. In this case the data man-
ager will be released to process the notifications,
the send_event call will be issued, and then the
data manager will again be held from making da-
ta change notifications. If 0 is specified, change
notifications and events are triggered as soon as
changes are made using gre.set_data calls. If
2 is specified then the data manager is held from
emitting change notifications until the end of script
execution even if a gre.send_event call is
made.

Plugin Name: model3d (-omodel3d,...) / Shared Library: libgre-plugin-model3d

novbo Disable the use of vertex buffer objects, by default
Vertex buffer objects are used for rendering.

Plugin Name: mtdev (-omtdev,...) / Shared Library: libgre-plugin-mtdev

bounds=[X1:Y1:X2:Y2] Where X1,Y1 is the top-left corner and X2,Y2 is
the bottom-right corner of the touch screen device.
On some screens, X1 may be less than X2 and Y1
may be less than Y2.

calibrate Puts mtdev into raw mode to be used in conjunc-
tion with the mtcalib application (See Crank Public
SVN) to acquire the bounds parameters for screen
calibration. Use the -omtdev,bounds option to
pass the parameters to sbengine.

device=[path to touch device] Plugin for Linux Multi-Touch Protocol to be used
with kernels supporting multi-touch events.

318

Storyboard Engine and Plugin Options

PLUGIN OPTION DESCRIPTION

points=[integer] This is the number of multitouch fingers that is
supported. Events will only be generated for this
number of fingers in contact with the screen, the
default is 5.

rotate=[0|90|180|270] Clockwise rotation of the touch input coordinates.
This option is not often required. By default, mt-
dev plugin input will be rotated depending on the
render manager configuration. The input transfor-
mation will be calculated by combining the spec-
ified rotation value and the render manager rota-
tion.

threshold=[integer] This is the number of pixels a touch point has to
move in order to generate a motion event, the de-
fault value is 1.

Plugin Name: tslib (-otslib,...) / Shared Library: libgre-plugin-tslib

calibrate Put tslib into raw mode which is used for calibra-
tion. If you do not have the following tslib vari-
ables setup the plugin will not load or function
properly.

TSLIB_CONSOLEDEVICE

TSLIB_TSDEVICE

TSLIB_CALIBFILE

TSLIB_CONFFILE

motion=[integer] The number of consecutive motion events to com-
press. Can be useful on a device which delivers a
high rate of motion events. Default is to not com-
press.

pressure=[integer] Set the pressure value which corresponds to a
press. The default is any value greater than 0 is a
press.

319

Appendix D. Standard Event
Definitions
Standard Event Definitions

Storyboard supports a list of standard events. These events are all prefixed with gre. and can be used
by your application.

System Events

gre.init

The system has been initialized and is ready. This is the first event set in the system.

Data:

 No data payload

gre.quit

The system is being shutdown.

Data:

 No data payload

gre.redraw

An area of the screen has been damaged (visible data has changed). A redraw event may not cause actual
screen drawing if the control which has changed is hidden or offscreen.

Data:

int32_t x
int32_t y
int32_t width
int32_t height

If the values are all 0 then the entire screen has been damaged

gre.rendermgr.error

This event will be generated when an error has occurred with a OpenGL ES 2.0 runtime using the "er-
ror_event" option.

Format:

320

Standard Event Definitions

4s1 code 1s0 msg

code :The code is the error code that is returned from the GL framework on the API call glGetError()

msg :The msg is a human readable diagnostic message about the context of the error and any associated
resources involved. For example: problems loading font or image resource textures will identify the image
and font related to the error, other API calls will be identified by context of execution (ie GL function
name, shader compilation).

Pointer Events
The following events are generated in response to a device such as a mouse or a touchscreen. These events
are targeted at specific controls based upon the controls location and sensitivity.

gre.press

A mouse/touchscreen has been pressed.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.motion

A touch contact has moved.

Data

321

Standard Event Definitions

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.release

A mouse/touchscreen has been released.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

322

Standard Event Definitions

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.touch

If a mouse/touchscreen presses and then releases on the same control then a touch event will be generated.
 This is useful for activating button style elements. If the release is found to intersect a different control
then a touch event is not generated.

Note

This event is synthetically generated by the framework based on incoming gre.press and
gre.release events. Event redirectors should generally not include this event in their list of
redirection events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtevent

A touchscreen contact has changed and there is information for more than one touch contact. A gre.mtevent
will only be delivered to the application and screen. Storyboard Engine will divide the event into discrete
gre.mtpress, gre.mtmotion and gre.mtrelease events which are then delivered to the appropriate model
elements.

Data

323

Standard Event Definitions

uint32_t timestamp
int16_t npoints
int16_t[npoints] x
int16_t[npoints] y
int16_t[npoints] z
int16_t[npoints] id
int16_t[npoints] state
int16_t[npoints] spare

Where:

timestamp This is an event timestamp in milliseconds since application start

npoints This is the number of points included in this event and may not correlate to the number of
fingers currently in contact with the touchscreen.

x This is an array of x values for npoints touch contacts

y This is an array of y values for npoints touch contacts

z This is an array of z values for npoints touch contacts. This parameter is dependent on the
availability of z-co-ordinate information

id This is an array of id values for npoints touch contacts. This parameter is used to track
multi-touch presses as they come in

state This is an array of state values for npoints touch contacts.

GR_PTR_STATE_PRESS - 0x01: as a finger makes contact with the touchscreen.
GR_PTR_STATE_MOTION - 0x02: as a finger moves on the touchscreen.
GR_PTR_STATE_RELEASE - 0x03: as a finger is lifted from the touchscreen.

spare This is padding and should be 0

gre.mtpress

A touchscreen has been pressed. This event is emitted where are two or more contact points.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left

timestamp This is an event timestamp in milliseconds since application start

324

Standard Event Definitions

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtmotion

A touch contact has moved. This event is emitted when there are two or more contact points.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtrelease

A touchscreen has been released. This event is emitted when there are two or more contact points.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

325

Standard Event Definitions

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.inbound

A mouse/touch has entered a control (if dragging a pointer or finger) which has no other mouse/touch
points in the control boundary. This event is generated once the coordinates enter a control boundary. If
mouse motion events are not supported on the platform then this event will not be generated.

Note

Control groups can not receive inbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

326

Standard Event Definitions

gre.outbound

A mouse/touch has left a control (if dragging a pointer or finger) and there are no remaining fingers in the
control boundary. This event is generated once the coordinates leave a control boundary. If mouse motion
events are not supported on the platform then this event will not be generated.

Note

Control groups can not receive outbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtinbound

A mouse/touch has entered a control (if dragging a pointer or finger) while other mouse/touch points are
currently in the control boundary. This event is generated once the coordinates enter a control boundary.
If mouse motion events are not supported on the platform then this event will not be generated.

Note

Control groups can not receive outbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype

327

Standard Event Definitions

int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtoutbound

A mouse/touch has left a control (if dragging a pointer or finger) while other mouse/touch points remain
in the control bounds. This event is generated once the coordinates leave a control boundary. If mouse
motion events are not supported on the platform then this event will not be generated.

Note

Control groups can not receive outbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN

328

Standard Event Definitions

GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

Keyboard Events
The following events are generated if a keyboard is present and supported by the render manager.

gre.keydown

A key is in the pressed state

Note

gre.keydown events with control as a destination require focus.

Data

uint32_t code
uint32_t modifiers

Where:

code This is the UTF-8 key value

modifiers A set of modifiers applied to the key

GR_EVENT_KEYMOD_ALT
GR_EVENT_KEYMOD_CTRL
GR_EVENT_KEYMOD_SHIFT

gre.keyup

A key which was previously pressed has been released

Data

uint32_t code
uint32_t modifiers

Where:

code This is the UTF-8 key value

modifiers A set of modifiers applied to the key

GR_EVENT_KEYMOD_ALT

329

Standard Event Definitions

GR_EVENT_KEYMOD_CTRL
GR_EVENT_KEYMOD_SHIFT

Screen Manager Events
The following events are generated by the Screen Manager during screen transitions. These events are
generated in the following order:

gre.screenshow.pre delivered to target (end) screen
gre.screenhide.pre delivered to source (start) screen
gre.screenshow.post delivered to target (end) screen
gre.screenhide.post delivered to source (start) screen

gre.screenshow.pre

A screen is being shown. This event is triggered before the screen is shown and signifies that a transition
may be starting

Data:

char *name The name of the screen which is being shown

gre.screenshow.post

A screen has been shown. This event is triggered after the screen is shown and signifies that a transition
has ended.

Data:

char *name The name of the screen which has been shown

gre.screenhide.pre

A screen is being hidden. This event is triggered before the screen is hidden and signifies that a transition
may be starting.

Data:

char *name The name of the screen which is being hidden

gre.screenhide.post

A screen has been hidden. This event is triggered after the screen is hidden and signifies that a transition
has ended.

Data:

char *name The name of the screen which has been hidden

Focus Events
The following events are generated on a change of control focus. If there is no focusable control on the
current screen then these events will not be generated. These events are targeted at the currently or last
focused control. When focus shifts from one control to another the lost focus event is sent first followed
by the got focus event.

330

Standard Event Definitions

gre.gotfocus

A control has received focus, delivered to the control that received the focus.

No data payload.

gre.lostfocus

A control has lost focus, delivered to the control that has lost the focus.

No data payload.

Table Events
The following events are generated by a Table control. If no table control is present then these events
will not be generated.

gre.table.viewport

A table has been resized via the table resize action. This event notifies the system of the new table size
and visible area.

Data:

uint32_t top_row
uint32_t left_col
uint32_t bot_row;
uint32_t right_col;
char *table

Where:

top_row The top row that is visible

left_col The left column that is visible

bot_row The bottom row that is visible

right_col The right column that is visible

table The name of the table whose viewport changed to cause this event

gre.cell.gotfocus

A table cell has received focus and is the currently active cell. This is delivered to the control template
with the cell focus information.

Data:

uint32_t row;
uint32_t col;
char *table

331

Standard Event Definitions

Where:

row The row that received focus

col The column that received focus

table The name of the table where the cell focus changed

gre.cell.lostfocus

A table cell has lost focus and is no longer the active cell. This is delivered to the control template with
the cell focus information

Data:

uint32_t row;
uint32_t col;
char *table

Where:

row The row that received focus

col The column that received focus

table The name of the table where the cell focus changed

Table Scroll Events
The following events are only generated when the "Enable list scrolling behavior" option is checked in
the Table properties.

gre.table.drag_start

This event is generated when a user begins dragging a scrolling table.

Data:

 The name of the object being scrolled

gre.table.drag_stop

This event is generated when a user stops dragging a scrolling table.

Data:

 The name of the object being scrolled

gre.table.scroll_trigger

This event is generated before the table.drag_stop event when it is detected that automatic scrolling will
occur.

332

Standard Event Definitions

Data:

 The name of the object being scrolled

gre.table.scroll_start

This event is generated when the scroll animation begins.

Data:

 The name of the object being scrolled

gre.table.scroll_stop

This event is generated when the scroll animation completes.

Data:

 The name of the object being scrolled

gre.table.scroll_cancel

This event is generated when the scroll animation is interrupted.

Data:

 The name of the object being scrolled

gre.table.scroll_complete

This event is generated when the object being scrolled has stopped moving naturally after a drag or an
animated scroll

Data:

 The name of the object being scrolled

Layer Scroll Events
The following events are only generated when the "Enable layer scrolling behavior" option is checked in
the Layer Scrolling properties.

gre.drag.start

This event is generated when a user begins dragging a scrolling layer.

Data:

 The name of the object being scrolled

gre.drag.stop

This event is generated when a user stops dragging a scrolling layer.

333

Standard Event Definitions

Data:

 The name of the object being scrolled

gre.scroll.trigger

This event is generated before the drag.stop event when it is detected that automatic scrolling will occur.

Data:

 The name of the object being scrolled

gre.scroll.start

This event is generated when the scroll animation begins.

Data:

 The name of the object being scrolled

gre.scroll.stop

This event is generated when the scroll animation completes.

Data:

 The name of the object being scrolled

gre.scroll.cancel

This event is generated when the scroll animation is interrupted.

Data:

 The name of the object being scrolled

gre.scroll.complete

This event is generated when the object being scrolled has stopped moving naturally after a drag or an
animated scroll

Data:

 The name of the object being scrolled

Mobile Events (Android and iOS)
The following events are only generated when running on Android and iOS.

gre.mobile.on_pause

The application has become inactive. The application will not be rendering to the screen after this event
is received.

Data:

334

Standard Event Definitions

 No data payload

gre.mobile.on_resume

The application has become active. The application will be rendering to the screen after this event is
received.

Data:

 No data payload

gre.mobile.on_background

The application has lost focus.

Data:

 No data payload

Android Events
The following event is only generated when running on Android.

android.onBack

The back button on the Android application has been pressed.

Data:

 No data payload

Windows Embedded Compact 2013 (WEC2013) Events
Limited gestures support has been added to the winevent plugin for the Windows Embedded Compact 2013
platform. This support has been added via the Storyboard Engine winevent plugin (libgre-plugin-wineven-
t.dll) and this plugin must be included in Storyboard Engine distribution.

The gesture support is designed to make visible the internal Windows gesture events and payloads that
are generated from the underlying system as described in this document: https://msdn.microsoft.com/en-
us/library/ee503599.aspx

As of the Storyboard 4.2 release, only the GID_PAN and GID_SCROLL sub-category of WM_GESTURE
gesture events are translated into corresponding Storyboard events. These events will only be generated
on WEC2013 hardware platforms where the BSP has been configured with gesture event support and the
touchscreen driver configured to enable such event generation.

In order to add application support for receiving these win.gesture events, the events must be added to the
Storyboard Designer application. The events can be added in the same manner as any other user defined
events are added at the point where they are used to trigger an action within the "New Action" dialog.

win.gesture.pinch

This event is generated in response to the Windows MW_GESTURE:GID_PAN event. The event data is
taken directly from the Windows event.

335

https://msdn.microsoft.com/en-us/library/ee503599.aspx
https://msdn.microsoft.com/en-us/library/ee503599.aspx

Standard Event Definitions

Data: (4s1 x 4s1 y 4s1 spread)

int32_t x
int32_t y
int32_t spread

win.gesture.[up|down|left|right|unknown]

This event is generated in response to the Windows MW_GESTURE:GID_SCROLL event. The event
data is taken directly from the Windows event.

Data: (4s1 velocity 4s1 angle)

int32_t velocity
int32_t angle

Plugin Specific Event Definitions
The following events are generated by optional Storyboard plugins.

Timer Events
These events are generated by the libgre-timer plugin

timer.[name] Timer Events

Timer events are generated as a result of a timer action. See documentation on the gra.timer action
for further information about configuring timers.

The timer event name will be formatted as timer.[name] where name is the value set as the name
of the timer when the action was defined.

Animation Events
These events are generated by the libgre-animation plugin

gre.animate.complete.[name]

Animation complete events are generated as a result of an animation action. See documentation on the
gra.animation action for further information about configuring animations.

When an animation is completed, an animation complete event will be fired. The event name will be
formatted as gre.animate.complete.[name] where name is the value set as the name of the
animation when the action was defined.

gre.animate.stop.[name]

Animation stop events are generated as a result of an animation stop action. See documentation on the
gra.animate.stop action for further information on terminating animations.

336

Standard Event Definitions

When an animation is stopped, an animation stop event will be fired. The event name will be formatted
as gre.animate.stop.[name] where name is the value set as the name of the animation when the
action was defined.

Data: (1s0 id)

Gesture Events
These events are generated by the libgre-gesture plugin

gre.gesture.up

Data:

char *gesture_num
int32_t time

gre.gesture.down

Data:

char *gesture_num
int32_t time

gre.gesture.left

Data:

char *gesture_num
int32_t time

gre.gesture.right

Data:

char *gesture_num
int32_t time

Screen Display Capture (ScreenDump) Events
These events are generated by the libgre-screen-dump plugin

gre.screendump.complete

A screen dump action has completed.

337

Standard Event Definitions

gre.screendump.failed

Data:

 char *message

Screen Event Capture/Playback Events
These events are generated by the libgre-animation plugin

gre.capture.started

This event will be generated when the capture-playback plugin begins an event capture session.

gre.capture.stopped

This event will be generated when the capture-playback plugin event capture session is stopped.

gre.playback.started

This event will be generated when the capture-playback plugin begins an event playback session.

gre.playback.complete

This event will be generated when the capture-playback plugin playback is finished by reaching the end
of the playback session.

gre.playback.stopped

This event will be generated when the capture-playback plugin playback session is stopped.

Media Events

gre.media.exit

The media backend application has exited.

Data:

No data payload

gre.media.timeupdate

Emitted when the time has been updated.

Data: "4u1 time_elapsed 1s0 channel_name"

unsigned time_elapsed
char channel_name[MAX_CHANNEL_NAME_LEN + 1]

338

Standard Event Definitions

Where:

time_elapsed The time that has elapsed during play back

channel_name The name of the channel that this time event occurred on

gre.media.durationupdate

Emitted when a change in the duration of the media is detected.

Data: "4u1 total_time 1s0 channel_name"

unsigned total_time
char channel_name[MAX_CHANNEL_NAME_LEN + 1]

Where:

total_time The total duration of the current media file

channel_name The name of the channel that this time event occurred on

gre.media.statechange

Emitted when the player has changed state, between a paused and playing state.

Data: "1s33 channel_name 1s0 state"

char channel_name[MAX_CHANNEL_NAME_LEN + 1]
char state[1]

Where:

channel_name The name of the channel that is changing state

state The new state: “paused” | “playing”

gre.media.complete

Triggered when the named media has played to the end and stopped playing

Data: "1s33 channel 1s0 name"

 char channel_name[MAX_CHANNEL_NAME_LEN + 1]
 char media_name[1]

Where:

channel_name The name of the channel that has completed playback

media_name The name of the media stream that completed playback

339

Standard Event Definitions

gre.media.error

Triggered when there was an error playing the media source.

Data: "1s33 channel_name 1s0 error_msg"

char channel_name[MAX_CHANNEL_NAME_LEN + 1]
char error_msg[1]

Where:

channel_name The name of the channel that received an error

error_msg[1] The error message

Logger Events

gre.%perf_prefix%.start

Turn on performance logging. Note that %perf_prefix% defaults to "perf", but can be set through the
logger plugin options.

Data: "1s0 options" The options to start the performance logging with. This
can be omitted. Only the performance logging options will be recognized

gre.%perf_prefix%.stop

Turn off performance logging. Note that %perf_prefix% defaults to "perf", but can be set through the
logger plugin options.

Data:

No data payload

gre.%perf_prefix%.set.options

Set the options to use for performance logging. Note that %perf_prefix% defaults to "perf", but can be set
through the logger plugin options.

Data: "1s0 options" The options to use with performance logging. Only the
performance logging options will be recognized

340

Appendix E. Standard Action
Definitions
Built-in Action Definitions

Storyboard supports a number of standard actions which are built-in to the framework. These actions
are all prefixed with gra. and can be incorporated into your application design without any plugin de-
pendency.

gra.screen
Cause a screen transition to occur by replacing the current screen with the new one.

The action arguments are:

screen The name of the screen to transition to.

gra.screen.fade
Causes a screen transition to occur by fading the old screen into the new one.

The action arguments are:

screen The name of the screen to transition to.

rate Animation rate string that defines how the alpha value will change over the transition:

linear
easein
easeout
easeinout
bounce

fps The frames per second to use for the transition

duration The duration of the transition in milliseconds

gra.screen.hold
Hold all screen updates. While held a screen will not redraw.

gra.screen.release
Release a held screen. If a screen was damaged during the period of time that the screen was being held,
then a redraw action will be triggered.

gra.sendevent
Send an event to the application's input event queue. This action is equivalent to injecting an event via
Storyboard IO or using the Lua gre.send_event() API

341

Standard Action Definitions

The action arguments are:

event The name of the event to send

gra.datachange
Change or create a variable value in the data manager.

The action arguments are key/value pairs such that the key is the fully qualified model path for the variable
and the value is the new value to assign to that variable. For more information on creating the model paths,
see the Data Variables section of this document.

gra.screen.focus.set
Set the focus to a specific control.

The action arguments are:

index The focus index to set the focus to. If the control name is to be used instead of specific focus
index value then this value should be set to -1 to avoid confusion about the intent of the action.

control The name of a control to set the focus to.

Only one of either the index or the control need to be provided for this action. If both arguments are set,
then the index value will be used.

In order for this action to complete successfully, the control specified must be set as focusable. For more
information about making controls focusable and the focus operation in Storyboard, refer to the Focus
section in the Execution Pipeline part of this document.

gra.screen.focus.next
Move the current focus to the next focusable control.

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.screen.focus.prev
Move the current focus to the previous focusable control.

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

342

Standard Action Definitions

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.screen.focus.direction
Move the current focus to the next control in a direction.

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

direction The direction to search for the next focusable control

up
down
left
right

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.table.scroll
Scroll the content of one or more tables.

Note

Only one table scroll animation can be run at a time. Storyboard Engine will cancel the currently
running table scroll animation by snapping to the end of the animation and then it will trigger
the new table scroll animation.

The action arguments are:

control The name of the table control to scroll. May be a comma separated list if multiple tables
are specified.

row The absolute 1 based row to start the scroll from. The default, 0, indicates that scrolling
should start from the current row

col The absolute 1 based column to start the scroll from. The default, 0, indicates that scrolling
should start from the current column

delta_row The number of rows to move. A positive value moves the table down a negative value
moves the table up

delta_col The number of columns to move. A positive value moves the table right a negative value
moves the table left

fps The frames per second rate at which to scroll the table.

duration The duration in milliseconds to run the scroll over.

343

Standard Action Definitions

gra.table.resize
Set the number of rows and columns for a table. This action does not resize the control, simply the number
of cells contained within the virtual table.

The action arguments are:

control The name of the table control to resize.

rows The number of rows for the table. Specifying 0 will leave the current number of rows un-
changed.

columns The number of columns for the table. Specifying 0 will leave the current number of columns
unchanged.

When the table is resized, a gre.table.resize event will be emitted.

gra.table.navigate
Navigates the cells of a table, sets the active cell which in turn generates the cell focus events. If the new
active cell is not visible the table will be scrolled in order to show this cell.

The action arguments are:

control The name of the table control to scroll. May be a comma separated list if multiple tables
are specified.

fps The frames per second rate at which to scroll the table, 0 performs an immediate scroll.

duration The duration in milliseconds to run the scroll over, 0 scrolls it immediately.

direction The type of navigation to perform

set Sets the active row and column to what is specified in the row/col parameters.
The option only ensures that the cell is visible and does not guarantee the cell
will be at the top of the visible list.

next Move to the next cell, scroll by column then by row

prev Move to the previous cell, scroll by column then by row

up Move to the cell above the current one

down Move to the cell below the current one

left Move to the cell to the left of the current one

right Move to the cell to the right of the current one

home Move to the first cell in the table at row,column 1,1

end Move to the last cell in the table

row The row to navigate to. This is only used if direction is assigned set

col The column to navigate to. This is only used if direction is assigned set

344

Standard Action Definitions

gra.scroll.stop
Stop the scrolling momentum of an object (layer or table)

The action arguments are:

object The object whose scrolling should stop. This should be the fully qualified name of a layer
instance, or the name of a table.

gra.log
Use the GRE logging mechanism to output a message.

The action argument is the string message that should be output.

gra.resource.dump_def
Remove a resource which is managed by the resource manager.

The action arguments are:

pool The pool name containing the resource to dump

ref The name of the resource to dump

The currently defined resource pools are image containing all of the images and font containing all of
the fonts associated with the Storyboard application.

gra.playback
This action is used to begin or to stop playback of a capture-playback file using the capture-playback
plugin. The plugin currently only supports the playback of one file at a time.

The action arguments are:

Playback True to begin playback

False to stop playback

Filename The name of the file to playback

Loop The number of times to loop playback

Quit Send a quit message when finished

gra.capture
This action is used to begin or to stop capture of a capture-playback file using the capture-playback plugin.
Only one capture-playback file may be captured at a time.

The action arguments are:

Capture True to begin capture

False to stop capture

345

Standard Action Definitions

Filename The name of the file to capture the events

Plugin Action Definitions
The following actions are only available when optional Storyboard plugins has been loaded.

gra.lua
Cause a Lua script function to execute.

Plugin libgre-plugin-lua.so

Options: script The name of the Lua function to invoke

Additional arguments can be passed to the function by providing additional key/value pairs
to the action. The key/value pairs are provided to the Lua function as values in the argument
table.

For example to call the Lua function myfunction with an extra argument, firstar-
gument, that corresponds to the value of the application variable myvar you would simply
add a new entry to the parameter list.

The corresponding call to the Lua function would fill the entry into the argument table such
that:

function myfunction(mapargs)
 print("The value is: " .. tostring(mapargs.firstargument))
end

would print out the value of ${app:myvar}.

gra.ccallback
Cause a C function to execute. This action is only availbale on Storyboard Lite platforms. The functionality
can be simulated in Designer though through Lua. The C Callback plugin will search for a Lua function
that has the same name as the C function.

Plugin libgre-plugin-ccallback.a

Options: function The name of the C function to invoke

gra.animate
Start an animation. Animations are started based on their name. Each animation can have an optional
identifier (id) which is used to ensure that animations run in an exclusive manner. If an existing animation
is running that uses the same identifier, then that animation is stopped before this animation is started. The
data argument is as follows:

Plugin libgre-plugin-animation.so

Options: name The animation name to start

346

Standard Action Definitions

id An optional instance id to be associated with the animation. Animation identifiers
can be used with different animations to ensure that only one animation of the set
is running at a time.

When the animation stops it will emit a notification event in the form of gre.animate.com-
plete.[name]. This event will be delivered within the context of the gra.animate action and will be
delivered to the object which invoked the action.

gra.animate.stop
Stop an animation. If you stop an animation only by name then all running animations with that name will
stop and emit a complete event. If you stop an animation by id then only that specific animation will stop
and emit a complete event. The data argument is as follows:

Plugin libgre-plugin-animation.so

Options: name The animation name to stop

id An optional instance id associated with the name

When the animation stops it will emit a notification event in the form of gre.animate.com-
plete.[name]

gra.audio
Start or stop the asynchronous playback of a WAV audio file. The data argument is as follows:

Plugin: libgre-plugin-audio.so

Options: filename A filename to play, or empty to stop the current playback.

gra.greio
Send a new event over a Storyboard IO channel. This action is best suited for name only event delivery. It is
possible to use this action for simple single data item payloads (ie a single string or a single numeric value)
but it is not recommended. The Lua API provides a more comprehensive Storyboard IO event delivery
mechanism via the gre.send_event or gre.send_event_data function calls.

The action parameters below map directly to the Storyboard IO C API and a more comprehensive expla-
nation of their use can be found there and in the Storyboard architecture and Working with Eventssections
of this document.

Plugin: libgre-plugin-greio.so

Options: name Storyboard IO channel name to send the event to (required)

event The name of the event to generate (required)

target The fully qualified name of the target for the event as a string. (optional)

format The format of the event data (optional). Only a single data format element can
be provided in this action (ie 1s0 or 4s1)

data The data payload for the event (optional). This data must match the type asso-
ciated with the format string to be properly interpreted.

347

Standard Action Definitions

gra.perf_state
Control the capture of performance data

Plugin: libgre-plugin-logger.so

Options: state Turn off (0) or on (1) performance data capture

In order for this action to be used, the libgre-plugin-logger.so must have been started with per-
formance logging enabled, but not necessarily to have it start capturing the performance data. For exam-
ple sbengine -ologger,perf=0 will enable performance logging but not start capturing events
at startup while sbengine -ologging,perf=1 will enable performance logging and immediately
start capturing events.

gra.redirect
Redirect all events to another Storyboard IO channel.

Plugin: libgre-plugin-redirect.so

Options: channel Storyboard IO channel name to send the events to

gra.screen.path
Causes a screen transition to occur by sliding the old screen out and/or the new one in from a given
direction.

Plugin: libgre-plugin-screen-path.so

Options: screen The screen to transition to

rate Animation rate string that defines how the screen(s) will move over time

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

moving The screen(s) to animate with the desired path transition.

348

Standard Action Definitions

both
new only
old only

gra.screen.scale
Causes a screen transition to occur by scaling the old screen into the new one.

Plugin: libgre-plugin-screen-scale.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.glswitch
Causes a screen transition to occur by using 3D to switch the old screen into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

349

Standard Action Definitions

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

gra.screen.glrotate
Causes a screen transition to occur by using 3D to rotate the old screen in the x-axis into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

gra.screen.glflip
Causes a screen transition to occur by using 3D to switch the old screen into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout

350

Standard Action Definitions

easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

gra.screen.gldoors
Causes a screen transition to occur by using 3D to switch the old screen into the new one using a door
opening animation.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

351

Standard Action Definitions

gra.screen.gltip
Causes a screen transition to occur by using 3D to switch the old screen into the new one by tipping the
display forward.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

gra.screen.glcube
Causes a screen transition to occur by using 3D to switch the old screen into the new one using a cube
animation.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Animation rate string that defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

352

Standard Action Definitions

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all Move all layers between source and
destination screens

delta Collapse common topmost and bot-
tom most visible layers and only
move the layers in between that are
different between screens.

gra.screen.rotate
Causes a screen transition where the new screen is rotated.

Plugin: libgre-plugin-screen-rotate.so

Options: screen The screen to transition to

rotation The rotation value to apply to the new screen.

gra.screendump
Dump the contents of the screen to an image file.

Plugin: libgre-plugin-screen-dump.so

Options: filename The filename of the image file to create. The directory path to the filename
must exist and the filename will be overwritten if it is. The filename must
end with either a .bmp extension to generate BMP formatted images or .tga
to generate TGA formatted images

gra.system
Execute a system command. System commands will be dependent on the underlying operating system.
The result of the command will be logged to standard output.

Plugin: libgre-plugin-system.so

Options: command A system command to execute in text form.

gra.timer
Start, stop and control a timer.

353

Standard Action Definitions

Plugin: libgre-plugin-timer.so

Options: name The name to use to identify this timer (required)

rtime The time delay in milliseconds relative to the action invocation. Specify a value
of 0 to stop an existing timer.

repeat The number of milliseconds to delay after the timer first fires, used to provide
a stable repeat timer. Specify 0 for a one shot timer.

count The number of times that the timer should repeat before automatically stopping,
assuming that the timer is not a one shot timer. Specify -1 to allow an unlimited
number of repeat firings

rtime must be specified and a value of 0 for rtime and repeat indicates that the timer should stop firing.

For example, to start a timer that fires in 1s from the event and then every 500ms afterwards:

<action ... type="gra.timer" data="name=MyTimer,rtime=1000,re-
peat=500" />

Then to stop the timer:

<action ... type="gra.timer" data="name=MyTimer,rtime=0,repeat=0" />

An event will be generated each time that the timer fires and will be named timer.<name> so for the
examples above, the event would be generated would be timer.MyTimer.

gra.timer.stop
Stop a timer.

Plugin: libgre-plugin-timer.so

Options: name The name to use to identify this timer (required)

For example, to start a timer that fires in 1s from the event and then every 500ms afterwards:

<action ... type="gra.timer" data="name=MyTimer,rtime=1000,re-
peat=500" />

Then to stop the timer:

<action ... type="gra.timer.stop" data="name=MyTimer" />

Media Actions
The following actions can be used to control the media playback. Note that all actions, with the exception of
the connect and disconnect actions, take a “channel_name” argument. This is used to target a specific play-
back channel. For example if a video is started with “gra.media.new.video” with “channel_name=video1”
then any subsequent action which wants to act on this video, such as play/pause, must set the channel
“video1”.

gra.media.connect

Tells the plugin to try and connect to the media backend.

354

Standard Action Definitions

There are no action arguments for this action

gra.media.disconnect

Tells the plugin to disconnect from the media backend.

There are no action arguments for this action.

gra.media.new.audio

Tells the plugin to play a new audio file.

The action arguments are:

channel_name The channel name the new video is to be played on

media_name The name of the media to play, full path to an audio file

volume The initial volume value to play the media at. The value should be between 0
and 100.

update_interval The number of milliseconds to wait in between update messages

emit_time_events A value that is set to 1 to emit time update events, 0 otherwise

extra_data Any extra data that should be passed to the backend, can be NULL

gra.media.new.video

Tells the plugin to play a new video file.

The action arguments are:

channel_name The channel name the new video is to be played on

media_name The name of the media to play, full path to a video file

volume The initial volume that the media should be played at

object_name The name of the external object to display content on. This is necessary
when using an external render extension to display the content, please
refer to the external render extension documentation

external_buffer_name The name of the render extension to display content on. This is necessary
when using an external render extension to display the content, please
refer to the external render extension documentation

update_interval The number of milliseconds to wait in between update messages

emit_time_events A value that is set to 1 to emit time update events, 0 otherwise

output_width The width of the video

output_height The height of the video

output_depth The output depth of the video in bytes per pixel. 16bit = 2, 24bit = 3,
32bit = 4

355

Standard Action Definitions

extra_data Any extra data that should be passed to the backend, can be NULL. See
each backend for a description of this data

gra.media.volume

Triggers a change in the playback volume.

The action arguments are:

channel_name The channel name to change the volume on

volume The value to change the volume to, a number between 0 and 100

emit_volume_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.seek

Triggers a change to the current playback position of the media that is playing.

The action arguments are:

channel_name The channel name to change the seek position on

seek_num The new seek position for the media file

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.stop

Changes the media playback state to stopped.

The action arguments are:

channel_name The channel name to change the state on

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.resume

Changes the media playback state from paused to playing.

The action arguments are:

channel_name The channel name to change the state on

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.pause

Changes the media playback state from playing to paused.

The action arguments are:

channel_name The channel name to change the state on

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

356

Appendix F. Standard Render
Extension Definitions

Common Render Extension Options
The follow is a list of common options across many render extensions

X The x position of the render extension relative to the control (number,
optional, default: 0)

Y The y position of the render extension relative to the controls (number,
optional, default: 0)

Width The width of the render extension, if it is set to -1 then it will set to the size
of the object being rendered (number, optional, default: width of object
it is attached to)

Height The height of the render extension, if -1 then it will set to the size of the
object being rendered (number, optional, default: height of object it is
attached to)

Alpha The alpha or transparency value for this render extension (number, op-
tional, 0-255, default: 255 (opaque))

Rotation The rotation for the item in degrees, (0-360) (number, optional, default: 0)

Vertical Alignment The vertical alignment within the control (number, optional, default: 0).
This alignment value is a numeric value corresponding to the following:

0 top (default)

1 top

2 center

3 bottom

Horizontal Alignment The horizontal alignment within the control (number, optional, default:
0). This alignment value is a numeric value corresponding to the follow-
ing:

0 left (default)

1 left

2 center

3 right

A render extension can have a vertical and horizontal alignment. This alignment is based on the control
area and the render extension position and size. The following describes the effects of these parameters
on alignment.

Width and height set, position set to (0,0)

357

Standard Render Ex-
tension Definitions

Width and height set, position set to (5,5). The position functions as an offset to the alignment

Canvas
The canvas render extension provides a surface for custom drawing using the the section called “Storyboard
Lua Canvas API”. The Plotting Sample demonstrates how to use the Lua canvas API and the canvas render
extension together.

The canvas render extension uses many standard options but also includes:

Name The canvas name to use with the gre.get_canvas

358

Standard Render Ex-
tension Definitions

Circle and Arc
The circle and arc render extensions provide a quick way to draw filled or outlined circles and ellipses
in addition to arc segments. The Circles Sample demonstrates how the properties of this render extension
can be configured.

The circle render extension uses many standard options but also includes:

Style This is the style of the circle or arc and can be filled or stroked. If it is stroked
then the line width option can be set to determine the arc fill size

Color Color to use to stroke or fill the circle or arc.

Start/End Angle This option is available only for arcs and determines the start and end angle in
degrees that the arc should sweep through.

External Buffer
The external buffer render extension creates a buffer for other system applications or tasks to render into,
things such as video players and web browsers. This extension is only available when the external plugin
has been loaded. The Media Sample demonstrates how to use an external buffer to render content from
a video player.

The external buffer render extension uses many standard options but also includes:

Name The name of the external render extension. This information should be provided by the exter-
nal render extension application provider and is used to allow the application to send update
messages to the Storyboard Engine.

Object This is the path to a shared memory object which is created by the external application and is
loaded by the Storyboard Engine. This information should be provided by the external render
extension application provider.

Fill
The fill render extension draws a filled rectangle to the screen.

The fill render extension uses many standard options but also includes:

Color Color to use for item (number RGB format, optional)

Image
The image render extension draws an image to the screen. Images can be scaled and tiled. When scaled,
the image can also be set to maintain the aspect ratio. Many of the Samples showcase image property
manipulation.

The image render extension uses many standard options but also includes:

Name The name of the image to use (string, optional)

Scale Enable scaling of the image if set to 1. The image will be loaded at full resolution
and then scaled when rendered. If width and height are not set the image is scaled
to the control size (number, optional)

359

Standard Render Ex-
tension Definitions

Load Scaled Enable scaling on load of the image if set to 1. This will load the image at the
specified size and scale during the image decode. If width and height are not set
the image is scaled to the control size (number, optional)

Tile Tile the image, if width and height are not set the image is tiled to the control
size (number, optional)

Aspect If scaling maintain the images aspect ratio (number, optional)

Center Rotation If this value is turned on then any rotation applied to the image will happen around
the center of the image and the values of Center X, Center Y will be ignored.

Center X, Y These values are only applied when the Center Rotation option is disabled and
they specify the location of the rotation center point as a value relative to the
control's upper left corner as 0,0 increasing as you go right and down. So to rotate
around the center of a control whose width, height was 10, 20 you could specify
a center point of X = 5 and Y = 10

Non-scaled, Scaled and Tiled Image Sample

Image Alignment Sample

Polygon
The polygon render extension draws a filled (convex) polygon to the screen. This extension is only avail-
able when the polygon plugin has been loaded. The Trend Sample demonstrates how to use a polygon
with dynamic point generation to render a trend graph.

The polygon render extension uses many standard options but also includes:

360

Standard Render Ex-
tension Definitions

Points a list of points for the polygon (string). The list of points are x,y values that are space separated,
for example: 10,20 5,5 0,0.

Style The style of polygon to render (string). The style corresponds to one of the following values:

Dash ("dash") Draw a dashed line using Fill (color) and Dash
Pattern attributes

Fill ("fill") Draw a filled polygon using Fill (color) at-
tribute

Fill & Stroke ("filloutline") Draw a filled polygon using Fill (color) at-
tribute, then outlined with Outline (color) at-
tribute

Line ("line") Draw a line using Fill (color) attribute

Loop ("loop") Draw a line (with connected ends) using Fill
(color) attribute

Line Width ("linewidth") Changes width of the outline (stroke) drawn (number)

Dash Pattern ("dash") Defines the dash size and the space size between each dash, only used
with "dash" style (string). For example a long line short space might
look like "10 5 10 5"

Anti-alias ("antialias") Indicates if the polygon line drawn should be anti-aliased (1) or not
(0). Single width outlined polygons are not anti-aliased on OpenGL
ES 2.0 platforms. The multisample option for the OpenGL ES
2.0 Storyboard runtime controls polygon anti-aliasing.

Fill ("color") The color used to fill the polygon.

Outline ("outlinecolor") The color used to outline (stroke) a filled polygon i.e. if the style
is Fill & Stroke

Rectangle
The rectangle render extension draws a single pixel outline rectangle to the screen.

The rectangle render extension uses many standard options but also includes:

Color Color to use for item (number RGB format, optional)

Text
The text render extension draws a string to the screen. Strings can be wrapped on word boundaries and
also rotated orthogonally. The following shows the effects of rotation on strings.

The text render extension uses many standard options but also includes:

Text The text string to display (string, optional)

Font The font to use (string, optional)

Size The point size of the string (number, optional)

361

Standard Render Ex-
tension Definitions

Underline Specifies if the string show display an underline (1) or not display an underline (0 default).

Overflow Defines behaviour when text overflows available horizontal space. Options are do nothing
("none" default), wrap at word boundaries ("wrap"), wrap at character boundaries ("char")
or end text with an ellipsis ("ellipsis").

3D Model
The 3D model render extension renders a 3D model into the control. Currently models in Wavefront Object
(.obj) format are supported. This extension is only available when using OpenGL or OpenGL ES 2.0 based
render managers, and requires the model3d plugin to be loaded.

The coordinate system in the render extension is the default OpenGL default coordinate system, with
positive x to the right, positive y up, and positive z towards the viewer. The camera position defaults to
(0, 0, 0), with the view direction along the negative z axis.

A Phong reflection model is implemented. A directional light source is present with white light coming
from the (0, 1, 1) direction. The Phong model makes use of three terms:

• Ambient - The color of the material in the absence of direct light. The material will never appear darker
than the ambient color.

• Diffuse - The color of light reflected from the material.

• Specular - The color of the highlights from the material. The specular exponent controls how large
the highlight is.

For more details on the Phong reflection model refer to Phong Reflection Model [http://en.wikipedi-
a.org/wiki/Phong_reflection_model] or to any book on computer graphics.

Rotations for the model are defined using Euler angles, with rotations applied around the z (psi), y (theta)
and then x (phi) axes.

An OBJ file defines vertices and faces, and optionally normals and texture coordinates. If normals are not
present, they will be calculated according to the convention that vertices in a face are specified in counter-
clockwise order. If texture coordinates are not present, the model will not be rendered using a texture.
Faces may be grouped together, and each group may be rendered with a different material.

Each OBJ file may also specify a Material (.mtl) file which allows for the material properties of the model
to be specified. The following properties in a material file are currently supported:

• d - The transparency (alpha) of the material.

• Ka - The ambient lighting component of the material.

• Kd - The diffuse lighting component of the material.

• Ks - The specular lighting component of the material.

• Ns - The specular lighting exponent of the material.

• map_Kd - The texture specifying the diffuse color of the material. If the texture can be loaded, it will
be used rather than the Kd parameter to when calculating the diffuse color.

If a material file is not present, the object will be rendered with a white color.

The 3D model render extension uses many standard options but also includes:

362

http://en.wikipedia.org/wiki/Phong_reflection_model
http://en.wikipedia.org/wiki/Phong_reflection_model
http://en.wikipedia.org/wiki/Phong_reflection_model

Standard Render Ex-
tension Definitions

Filename The name of the model to load.

Camera Position X/Y/Z The X/Y/Z position of the camera.

Azimuth The rotation of the camera around the y axis in degrees.

Elevation The rotation of the camera around the x axis in degrees.

Field Of View The field of view the camera in degrees. The field of view specifies how
much of visual sphere is mapped to the control. A larger field of view
is equivalent to using a wide-angle lens on a camera, and a smaller field
of view is equivalent to using a zoom lens.

Model X/Y/Z The X/Y/Z position of the model.

Orientation Phi The rotation of the model around the x axis in degrees.

Orientation Theta The rotation of the model around the y axis in degrees.

Orientation PSI The rotation of the model around the z axis in degrees.

363

Appendix G. Storyboard Engine Public
API

Users that are writing their own plugin or users who are working with a Storyboard RTExec or Storyboard
Lite plaform should familiarize themseleves with this section as it talks about how the Storyboard engine
is initialized. If you are running on a system such as Linux or QNX, then the information in this section
is not needed.

The Storyboard Engine is initialized in two steps:

1. The first step is to create the engine's application handle via the gr_application_create_args
function. This function initializes the core framework and plugins and loads the UI model and verifies
its integrity.

2. Once the UI model is loaded then the main UI event loop can be started using the gr_appli-
cation_run function along with the application handle returned from gr_application_cre-
ate_args. The gr_application_run function will not return until the application terminates.

The Integration API is thread safe so it is possible to terminate the application, by calling gr_appli-
cation_quit, in another thread. In general the gr_application_create and gr_applica-
tion_run functions should be called from the same thread context since the initialization of some of the
engine's sub-systems may create thread local data required for execution.

When the application terminates, and returns from gr_application_run, then the application handle
should be released by calling gr_application_free. Once an application handle has been released
it is no longer valid to be used.

The Engine provides execution tracing functionality through the gr_application_debug interface.
This function takes an optional application handle and an integer command value. Additional arguments
may be required based on the type of command and are documented within the <gre/gre.h> header. This
function is most often used to provide additional diagnostics. For example invoking:

gr_application_debug(NULL, GR_DEBUG_CMD_VERBOSITY, GR_LOG_TRACE2);

will enable logging of all significant operations within the engine.

gr_application_create_args

#include <gre/gre.h>
gr_application_t * gr_application_create_args(
 const char *bundle,
 int flags,
 char * const *options,
 int option_count
);

The gr_application_create_args function creates the application handle for the Storyboard En-
gine. The application handle can be used to further configure the engine or to start it's execution.

364

Storyboard Engine Public API

Parameters:
 bundle A pointer to the model data. This may be a filename or a string based on the flags parameter.
 flags One or more GR_APP_* flags that control how the application handle is created
 options A pointer to an array of option/value pairs used to initialize the engine or NULL if no options
 are provided.
 option_count The number of options in the options array, must be even (0, 2, 4, ...)

Returns:
 An application handle on success or NULL on failure. On platforms where errno is available, it will contain
 failure details.

The gr_application_create_args function will load a model, initialize the engine's plugin sub-
system and then return an application handle. The model can be loaded from a file if the flags are
GR_APP_LOAD_FILE or the model can be loaded from an in-memory block if the flags are GR_AP-
P_LOAD_STRING. Once the model is loaded and plugins are initialized control returns to the caller.

gr_application_create

#include <gre/gre.h>
gr_application_t * gr_application_create(
 const char *bundle
);

The gr_application_create function creates the application handle for the Storyboard Engine.
The application handle can be used to further configure the engine or to start it's execution.

Parameters:
 bundle A pointer to the model data. This must be a filename.

Returns:

 An application handle on success or NULL on failure. On platforms where errno is available, it will contain
 failure details.

The gr_application_create will load a model, initialize the engine's plugin subsystem and then
return an application handle. Once the model is loaded and plugins initialized control returns to the caller.

gr_application_free

#include <gre/gre.h>
gr_application_t * gr_application_free(
 gr_application_t * handle
);

365

Storyboard Engine Public API

The gr_application_free Destroy and free an application handle. This will stop the execution of
the application and free any resources that are associated with it.

Parameters:
 handle A pointer to an application handle created using gr_application_create_args.

Returns:

 A zero on success and a non-zero status code on failure.

The gr_application_free will destroy a created application handle and stop execution of the ap-
plication. Any resources assiciated with the handle will be freed.

gr_application_run

#include <gre/gre.h>
int gr_application_run(
 gr_application_t * handle
);

The gr_application_run function creates the application handle for the Storyboard Engine. The
application handle can be used to further configure the engine or to start it's execution.

Parameters:
 handle A pointer to an application handle created using gr_application_create_args.

Returns:

 A zero on success and a non-zero status code on failure.

The gr_application_run will start the execution of the Storyboard Engine's main event loop. This
call will only return when the engine has terminated.

gr_application_quit

#include <gre/gre.h>
int gr_application_quit(
 gr_application_t *handle
);

The gr_application_quit function provides a method of asynchronously terminating an executing
application handle that has been started by gr_application_quit from a seperate thead.

366

Storyboard Engine Public API

Parameters:
 handle A pointer to an application handle created using gr_application_create_args.

Returns:

 Various values based on the command as listed in the header file <gre/gre.h>

The gr_application_quit is a method with which to terminate a handle started by gr_applica-
tion_run. It is an asynchronous call, and will not wait for gr_application_run to complete.

gr_application_debug

#include <gre/gre.h>
int gr_application_debug(
 gr_application_t *handle,
 unsigned command,
 ...
);

The gr_application_debug function provides an interface to some of the debugging and introspec-
tion facilities of the Storyboard Engine.

Parameters:
 handle A pointer to an application handle created using gr_application_create_args. Not all
 commands will require an application handle.
 command A GR_DEBUG_* command code.

Returns:

 Various values based on the command as listed in the header file <gre/gre.h>

The gr_application_debug is most frequently used to control the verbosity level of the application
using the GR_DEBUG_CMD_VERBOSITY command and it can also be used to dump out the system con-
figuration details when used with the GR_DEBUG_CMD_SYSTEM_INFO.

gr_app_log

#include <gre/gre.h>
void gr_app_log(
 gr_application_t *app,
 int level,
 const char *format,
 ...
);

367

Storyboard Engine Public API

The gr_app_log function provides an interface to integrate logging into user created threads and plu-
gins.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 level A value indicating the severity of the message, one of GR_LOG_*
 format A 'printf' style format string

Returns:

 Nothing

The gr_app_log is a method of integrating custom debug logging that obeys the the GR_DE-
BUG_CMD_VERBOSITY command and verbosity level.

gr_application_set_data

#include <gre/gre.h>
int gr_application_set_data(
 gr_application_t *app,
 const char *key,
 gr_data_format_t fmt,
 gr_data_union_t *data
);

The gr_application_set_data function provides an interface to set a Storyboard data variable.
Copies the data into the corresponding data manager key, creating the key if needed.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 key The data key variable to set
 fmt The format describing the data argument: GR_DATA_FORMAT_(1s0|1u1|1s1|2u1|...)
 1s0 (string) | 4u1 (uint32_t) | 4s1 (int32_t) ...
 data A pointer to the data to set, this is not a transfer of memory ownership.

Returns:

 Zero on success, -1 on failure.

The gr_application_set_data is a method of setting, creating, and changing data variables which
are useable by the Storyboard engine.

gr_application_set_data_variable

#include <gre/gre.h>
int gr_application_set_data_variable(

368

Storyboard Engine Public API

 gr_application_t *app,
 const char *fqn,
 const char *variable,
 gr_data_format_t fmt,
 gr_data_union_t *data
);

The gr_application_set_data_variable function provides an interface to set a Storyboard
data variable. Combines the fqn and variable to create a key in the form of "fqn.variable". Copies the data
into the corresponding data manager key, creating the key if needed.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 fqn The fully qualified name name of the object, should be NULL for app level variables
 variable The name of the variable to set
 fmt The format describing the data argument: GR_DATA_FORMAT_(1s0|1u1|1s1|2u1|...)
 1s0 (string) | 4u1 (uint32_t) | 4s1 (int32_t) ...
 data A pointer to the data to set, this is not a transfer of memory ownership.

Returns:

 Zero on success, -1 on failure.

The gr_application_set_data is a method of setting, creating, and changing data variables which
are useable by the Storyboard engine.

gr_application_get_data

#include <gre/gre.h>
int gr_application_get_data(
 gr_application_t *app,
 const char *key,
 gr_data_format_t *fmt,
 gr_wrapped_data_t *data
);

The gr_application_get_data function provides an interface to get Storyboard data variables
associated with a key, and their formats.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 key The data key variable to get
 fmt The format describing the data argument: GR_DATA_FORMAT_(1s0|1u1|1s1|2u1|...)
 1s0 (string) | 4u1 (uint32_t) | 4s1 (int32_t) ...
 Can be GR_DATA_FORMAT_UNKNOWN and the original format will be used.
 data Location to store the returned data, this is a copy of the requested data and its format

369

Storyboard Engine Public API

Returns:

 Zero on success, -1 on failure.

The gr_application_get_data function is a method of retrieving the data values and formats for
any keys associated Storyboard engine variables.

gr_application_get_data_variable

#include <gre/gre.h>
int gr_application_get_data(
 gr_application_t *app,
 const char *fqn,
 const char *variable,
 gr_data_format_t fmt,
 gr_wrapped_data_t *data
);

The gr_application_get_data_variable function provides an interface to get Storyboard data
variables associated with a key, and their formats. Combines the fqn and variable to create a key in the
form of "fqn.variable".

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 fqn The fully qualified name name of the object, should be NULL for app level variables
 variable The name of the variable to get
 fmt The format describing the data argument: GR_DATA_FORMAT_(1s0|1u1|1s1|2u1|...)
 1s0 (string) | 4u1 (uint32_t) | 4s1 (int32_t) ...
 Can be GR_DATA_FORMAT_UNKNOWN and the original format will be used.
 data Location to store the returned data, this is a copy of the requested data and it's format
Returns:

 Zero on success, -1 on failure.

The gr_application_get_data function is a method of retrieving the data values and formats for
any keys associated Storyboard engine variables.

gr_application_add_event_listener

#include <gre/gre.h>
gr_application_event_listener_t gr_application_add_event_listener(
 gr_application_t *app,
 const char *event,
 gr_event_listener_t handler,
 void *data

370

Storyboard Engine Public API

);

The gr_application_add_event_listener function provides an interface associate a call-
back/handler to associate with a Storyboard event.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 event The event to add a listener for
 handler The handler to call for this event
 data User defined data which is passed to the handler

Returns:

 A pointer to the created listener.

The gr_application_add_event_listener function is the method used to associate a call-
back/handler to execute with a Storyboard engine event. When the event occurs the handler will execute
in the main Storyboard execution thread

gr_application_rem_event_listener

#include <gre/gre.h>
int gr_application_rem_event_listener(
 gr_application_t *app,
 gr_application_event_listener_t *listener
);

The gr_application_rem_event_listener function provides an interface to free a user created
gr_application_event_listener_t

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 listener A pointer to a gr_application_event_listener_t created by
 gr_application_add_event_listener
Returns:

 Zero on success, -1 on failure.

The gr_application_rem_event_listener is the method used to free a gr_applica-
tion_event_listener_t created by gr_application_add_event_listener. Any han-
dler associuated with this listener will no longer execute

gr_application_send_event

371

Storyboard Engine Public API

#include <gre/gre.h>
int gr_application_send_event(
 gr_application_t *app,
 const char *event_target,
 const char *event_name,
 const char *event_format,
 const void *event_data,
 int event_nbytes
);

The gr_application_send_event function provides an interface to inject an event into the appli-
cation event queue.

Parameters:
 app A pointer to an application handle created using gr_application_create_args.
 event_target The name of the event target model element (screen,layer, control, render extension),
 or NULL to send to the default target (application level)
 event_name The name of the event to send, must not be NULL
 event_format The format of the data, or NULL if no data is transmitted
 event_data A pointer do the data to transmit, or NULL if no data is transmitted
 event_bytes The number of data bytes to transmit, or NULL if no data is transmitted

Returns:

 Zero on success, -1 on failure.

The gr_application_send_event is the method used to inject an event into the application event
queue. The event will be be processed after all events previously in the queue have been processed.

gr_context_get_application

#include <gre/gre.h>
gr_application_t *gr_context_get_application(
gr_action_context_t *app
);

The gr_context_get_application function is used to obtain the application handle from an action
context.

Parameters:
 action_context The action context to obtain the application handle from

Returns:

 The application handle that is tied to the action context

The gr_context_get_application is used to obtain the application handle from an action context

372

Storyboard Engine Public API

gr_context_max_fqn

#include <gre/gre.h>
int gr_context_max_fqn(
 gr_action_context_t *action_context
);

The gr_context_max_fqn function estimates the maximum length a fully qualified name contained
in an action context.

Parameters:
 action_context The action context to estimate the fully qualified name for

Returns:

 The estimated length for the maximum fully qualified name

The gr_context_max_fqn is used to estimate the maximum storage space needed to the longest fully
qualified name for the action context

gr_context_get_row

#include <gre/gre.h>
int gr_context_get_row(
 gr_action_context_t *action_context
);

The gr_context_get_row returns the row number of a table cell, if the action's context is a table cell.

Parameters:
 action_context The action context to get the row information from

Returns:

 The row number if control context for the action context is a table template, -1 otherwise

The gr_context_get_row is used to get the row number of the table cell from the action context, if
the control context of the action context is a table cell. If the control context of the action context is not
a table cell, this function returns -1.

gr_context_get_column

#include <gre/gre.h>
int gr_context_get_column(
 gr_action_context_t *action_context

373

Storyboard Engine Public API

);

The gr_context_get_column returns the column number of a table cell, if the action's context is
a table cell.

Parameters:
 action_context The action context to get the row information from

Returns:

 The column number if control context for the action context is a table template, -1 otherwise

The gr_context_get_column is used to get the column number of the table cell from the action
context, if the control context of the action context is a table cell. If the control context of the action context
is not a table cell, this function returns -1.

gr_context_get_control

#include <gre/gre.h>
int gr_context_get_control(
 gr_action_context_t *action_context,
 char *buffer,
 int buffer_len
);

The gr_context_get_control function stores the fully qualified name of the control in the buffer
provided up to buffer_len characters.

Parameters:
 action_context The action context to get the fully qualified name from
 buffer The character buffer to store the controls fully qualifed name in, the first character may be
 set to null, if there
 is no control in the action context
 buffer_len The storage space that the buffer has to store the name, see function gr_context_max_fqn

Returns:

 The length of the control name if there is a control in the context, -1 otherwise

The gr_context_get_control function will build the fully qulified name for the control context
based on the action context and store it in the buffer that is provided, up to buffer_len bytes. It will return
the length of the fully qualified name. If there is no control context in the action context, the function will
return -1 and set the first character in buffer to NULL.

gr_context_get_group

374

Storyboard Engine Public API

#include <gre/gre.h>
int gr_context_get_group(
 gr_action_context_t *action_context,
 char *buffer,
 int buffer_len
);

The gr_context_get_group function stores the fully qualified name of the group in the buffer pro-
vided up to buffer_len characters.

Parameters:
 action_context The action context to get the fully qualified name from
 buffer The character buffer to store the groups fully qualifed name in, the first character may be
 set to null, if there is no group in the action context
 buffer_len The storage space that the buffer has to store the name, see function gr_context_max_fqn

Returns:

 The length of the group name if there is a group in the context, -1 otherwise

The gr_context_get_group function will build the fully qulified name for the group context based
on the action context and store it in the buffer that is provided, up to buffer_len bytes. It will return the
length of the fully qualified name. If there is no group context in the action context, the function will return
-1 and set the first character in buffer to NULL.

gr_context_get_layer

#include <gre/gre.h>
int gr_context_get_layer(
 gr_action_context_t *action_context,
 char *buffer,
 int buffer_len
);

The gr_context_get_layer function stores the fully qualified name of the layer in the buffer pro-
vided up to buffer_len characters.

Parameters:

 action_context The action context to get the fully qualified name from
 buffer The character buffer to store the layers fully qualifed name in, the first character may be set
 to null, if there is no layer in the action context
 buffer_len The storage space that the buffer has to store the name, see function gr_context_max_fqn

Returns:

 The length of the layer name if there is a layer in the context, -1 otherwise

375

Storyboard Engine Public API

The gr_context_get_layer function will build the fully qulified name for the layer context based
on the action context and store it in the buffer that is provided, up to buffer_len bytes. It will return the
length of the fully qualified name. If there is no layer context in the action context, the function will return
-1 and set the first character in buffer to NULL.

gr_context_get_screen

#include <gre/gre.h>
int gr_context_get_screen(
 gr_action_context_t *action_context,
 char *buffer,
 int buffer_len
);

The gr_context_get_screen function stores the fully qualified name of the screen in the buffer
provided up to buffer_len characters.

Parameters:

 action_context The action context to get the fully qualified name from
 buffer The character buffer to store the screens fully qualifed name in, the first character may
 be set to null, if there is no screen in the action context
 buffer_len The storage space that the buffer has to store the name, see function gr_context_max_fqn

Returns:

 The length of the screen name if there is a screen in the context, -1 otherwise

The gr_context_get_screen function will build the fully qulified name for the screen context based
on the action context and store it in the buffer that is provided, up to buffer_len bytes. It will return the
length of the fully qualified name. If there is no screen context in the action context, the function will
return -1 and set the first character in buffer to NULL.

gr_context_get_fqn

#include <gre/gre.h>
int gr_context_get_fqn(
 gr_action_context_t *action_context,
 char *buffer,
 int buffer_len
);

The gr_context_get_fqn function stores the fully qualified name of the target model object in the
buffer provided up to buffer_len characters.

Parameters:

376

Storyboard Engine Public API

 action_context The action context to get the fully qualified name from
 buffer The character buffer to store the fully qualifed name in, the first character may be set to null, if there
 is no target in the action context
 buffer_len The storage space that the buffer has to store the name, see function gr_context_max_fqn

Returns:

 The length of the fully qualified name if there is a target model object in the context, -1 otherwise

The gr_context_get_fqn function will build the fully qulified name for the target model object
based on the action context and store it in the buffer that is provided, up to buffer_len bytes. It will return
the length of the fully qualified name. If there is no target model object in the action context, the function
will return -1 and set the first character in buffer to NULL.

gr_context_get_event_name

#include <gre/gre.h>
char *gr_context_get_event_name(
 gr_action_context_t *action_context
);

The gr_context_get_event_name function returns the name of the event that the action is asso-
ciated with.

Parameters:

 action_context The action context to get the fully qualified name from

Returns:

 The name of the event if there is an event name in the context, null otherwise

The gr_context_get_event_name function will return the name of the event that occured that
caused the action to be invoked.

gr_context_get_event_data

#include <gre/gre.h>
void *gr_context_get_event_data(
 gr_action_context_t *action_context,
 int *nbytes
);

The gr_context_get_event_data function returns the data payload of the event that the action
is associated with.

377

Storyboard Engine Public API

Parameters:

 action_context The action context to get the fully qualified name from
 nbytes A point to an integer to store the size of the data in

Returns:

 The data payload of the event if there is an event name in the context, null otherwise

The gr_context_get_event_data function will return the data payload of the event that occured
that caused the action to be invoked. It will store the size of the data payload in the nbytes parameter that
is passed in.

378

Part I. Storyboard Tutorials

Table of Contents
33. Importing Sample Projects from Crank's Public SVN ... 381
34. Working with Multiple Application Design Files ... 386

Creating a Project .. 386
Resolving Conflicts .. 388

35. Creating a 3D Model Application ... 389
New Project .. 389
3D Model Control ... 389
Resize Model .. 391

380

Chapter 33. Importing Sample Projects
from Crank's Public SVN

Installing Subclipse and connecting to the Crank Software public repository

Before we are able to start using the demos from the public Crank code repository we will first need to
install a SVN client. To do so in Storyboard Designer we go to Help > Install New Software.

Here at Crank we use Subclipse. Click on Add and for Name you can enter anything you please. To keep it
simple we will use Subclipse. For Location enter https://dl.bintray.com/subclipse/releases/subclipse/latest/
Click OK.

After you click OK you will be presented with a list of software to install. There is no need for Maven
so you can uncheck it. Click Next.

381

Importing Sample Projects
from Crank's Public SVN

Details of the software to be installed. Click Next.

Accept license agreements. Click Finish.

382

Importing Sample Projects
from Crank's Public SVN

Software installation progress.

Generic warning that the software being installed is not signed. Click OK.

After the Subclipse SVN client is installed you will need to restart Storyboard Designer. Click Restart Now.

Now that Subclipse is installed we need to go to that perspective to add a repository.

383

Importing Sample Projects
from Crank's Public SVN

Select SVN Repository Exploring. Click OK.

To add a repository we simply right click in the SVN perspective window and select New > Repository
Location.

Enter the Crank public code repository URL http://svn.cranksoftware.com/repo/storyboard/public Click
Finish. When you are prompted for login credentials use:

Username storyboard

Password crankrocks

384

Importing Sample Projects
from Crank's Public SVN

You are now connected to the Crank Public Repository. By expanding the directories you can see the
different demos available for checkout.

To checkout from the repository you right click on the demo and select Checkout. Once completed click
on the Storyboard Development tab to see the application in your workspace.

385

Chapter 34. Working with Multiple
Application Design Files

Storyboard's collaborative features help multiple users develop applications faster. You can merge multiple
files (*.gde) together and produce a single output during runtime. This tutorial explains how to create a
project with multiple application files.

Creating a Project
A project with multiple application files starts the same as a single application file project. Select File >
New > Storyboard Application or create a new project using the Photoshop Import feature.

A project can accommodate multiple stand-alone applications that share project images and script re-
sources. You can add an additional application file to an existing project in multiple ways:

• Create a new file within an existing project by selecting File > New > Storyboard Application and
choose to create a New Model in Existing Project

• Create a new file using the Photoshop Import feature and select the option to import .psd Into an Existing
Project as a New File.

• In the navigator view select and copy an existing application, then paste and rename the copied appli-
cation file.

For a multiple application project to function as a whole, application files need to reference one another.
Select the application from the Application Model View and in the Properties View, select Add external
model resource button. In the next dialog select the .gde file that was created in Step 2 and press OK.

To add layers from an external model to a local application:

• Select the Import External Layer tab and then select Import Selected Layers.

• Choose the layer(s) to add to the current screen. After adding an external layer, Storyboard will recognize
the external content and incorporate it to function like any other layer.

386

Working with Multiple
Application Design Files

To create a transition from a source application screen to an external application screen, add actions to an
application that perform a screen change.

Before launching a multi-file application with the simulator, the external .gde files have to be referenced
in the Simulator Configurations dialog.

To manage the runtime configurations, select Run > Storyboard Simulator Configurations. A list of avail-
able models that can be included in the runtime export used with Storyboard Engine is in the selected
project folder. To apply changes, select Apply and then Run.

387

Working with Multiple
Application Design Files

If no conflicts occur within the selected applications, they are merged and converted into a single unified
application at runtime. If conflicts exist, they must be resolved before the application can merge.

Resolving Conflicts
The application properties page provides an action to synchronize source content with referenced external
content. Any differences are flagged as a conflict and the user is prompted to resolve the conflict based
on the issue. Conflict types include:

Layers: If two or more layers have the same name their content needs to be identical.

Variables: Any application/global variables with the same name must have values that are the same.

Animations: If two or more animations use the same name then the animation needs to be identical.

Screens: Screens from all applications are compared. Two or more screens with the same name prompt
the user to resolve differences between the two.

388

Chapter 35. Creating a 3D Model
Application

This quick tutorial will show how to use the 3D Model Control with a new project

New Project
Create a new project by either File > New > Storyboard Application or selecting New Empty Project from
the Application View.

Give your Project a name and click Finish.

3D Model Control
Once the empty project loads add a 3D Model Control to the screen.

The 3D Model Selection dialog will pop up enabling you can navigate to the 3D model you want to load.

389

Creating a 3D Model Application

Click on the Import button to select your FBX or OBJ model.

The 3D model is then converted to our .ssg format and placed in a newly created models directory at the
root of your project. You can now choose the model to be used in your project.

390

Creating a 3D Model Application

Resize Model
Once the model loads it might not be immediately visible. In that case you can make use of the Resize
Model option in the properties view of the 3D model Control. This option modifies some of the camera
coordinates to make the model visible.

The 3D model should now be visible after using the Resize Model option.

Further manipulation of the 3D model properties may be needed in order to place the model in the desired
position.

391

Part II. Storyboard Demo Images

Table of Contents
36. NXP .. 395

i.MX 6QuadPlus .. 395
Demo Details .. 395

i.MX 6UltraLite .. 395
Demo Details .. 395

i.MX 6ULL .. 396
Demo Details .. 396

i.MX 6DualLite ... 396
Demo Details .. 396

i.MX 6SoloX .. 396
Demo Details .. 396

Toradex i.MX 7Dual SoM .. 397
Demo Details .. 397
Flashing the Image .. 397
U-Boot .. 398

Copying Image to an SD Card - Linux .. 398
Copying Image to an SD Card - Windows ... 398
Running the Image .. 398
Turn On or Off the Console .. 398

37. STMicroelectronics ... 400
STM32F429 ... 400

Demo Details .. 400
STM32F439 ... 400

Demo Details .. 400
STM32 F7 .. 400

Demo Details .. 400
Required Hardware and Software ... 401
Package Contents .. 401
STM32 ST-LINK Utility .. 402
Running the Demo .. 404
Importing the Demo into Storyboard Designer .. 405
Creating Your Own Demo .. 405

38. Microchip ... 406
SAMA5D2 ... 406

Demo Details .. 406
SAMA5D2 with 7 inch Display ... 406

Demo Details .. 406
Copying Image to an SD Card - Linux .. 407
Creating an Image - Windows ... 407
Running the Image .. 407

39. Renesas .. 408
RZ/A1 ... 408

Demo Details .. 408
Flashing the Image .. 408

40. Linux ... 409
TI AM355 Starter Kit .. 409

Step 1: Importing A Storyboard Sample .. 409
Step 2: Exporting A Storyboard Application .. 411
Step 3: Selecting The Storyboard Embedded Engine .. 413
Step 4: Configuring The Target Platform ... 413
Step 5: Running The Storyboard Application .. 413

393

Storyboard Demo Images

Raspberry Pi ... 414

394

Chapter 36. NXP
Experience multi-market demo applications built with Storyboard on your favorite NXP platform. Crank
Software demo images showcase Storyboard's design and development capabilities and the application
potential of popular platforms. Download [http://www.cranksoftware.com/demo_image/nxp] the demo
image that corresponds with your hardware, which includes everything you need to get and up and running
in minutes.

i.MX 6QuadPlus

Demo Details
Image Name: CrankSoftware_demo_imx6qpsabresd.sdcard

Board: i.MX 6QuadPlus SABRE

Display: HDMI with Capacitive Touch

Rendering Technology: OpenGL ES 2.0

Demo Resolution: 1280 x 720

Operating System: Linux

This demo image includes the following demos:

• IoT - Smart Home

• Movie Kiosk

• Automotive 3D Instrument Cluster

i.MX 6UltraLite

Demo Details
Image Name: CrankSoftware_demo_imx6ulevk.sdcard

Board: i.MX 6UltraLite Evaluation Kit

Display: 4.3" LCD8000-43T

Rendering Technology: fbdev

Demo Resolution: 480 x 272

Operating System: Linux

This demo image includes the following demos:

• Medical

• White Goods - Washing Machine

395

http://www.cranksoftware.com/demo_image/nxp
http://www.cranksoftware.com/demo_image/nxp

NXP

• Home Automation

i.MX 6ULL

Demo Details
Image Name: CrankSoftware_demo_imx6ullevk.sdcard

Board: i.MX 6ULL Evaluation Kit

Display: 4.3" LCD8000-43T

Rendering Technology: fbdev

Demo Resolution: 480 x 272

Operating System: Linux

This demo image includes the following demos:

• Medical

• White Goods - Washing Machine

• Home Automation

i.MX 6DualLite

Demo Details
Image Name: CrankSoftware_demo_imx6dlsabresd.sdcard

Board: i.MX 6 SABRE Platform for Smart Devices

Display: LVDS (on board)

Rendering Technology: OpenGL ES 2.0

Demo Resolution: 1024 x 768

Operating System: Linux

This demo image includes the following demos:

• IoT - Smart Home

• Movie Kiosk

• Medical

i.MX 6SoloX

Demo Details
Image Name: CrankSoftware_demo_imx6sxsabresd.sdcard

396

NXP

Board: i.MX 6SoloX SABRE

Display: LVDS connector - Pairs with MCIMX-LVDS1 LCD display board

Rendering Technology: OpenGL ES 2.0

Demo Resolution: 1024 x 768

Operating System: Linux

This demo image includes the following demos:

• IoT - Smart Home

• Movie Kiosk

• White Goods

Toradex i.MX 7Dual SoM

Demo Details
Image Name: CrankSoftware_demo_colibri_imx7.sdcard

Board: Toradex Colibri iMX7

Display: EDT 7" TFT WVGA with Touch

Rendering Technology: Linux framebuffer (fbdev)

Demo Resolution: 800 x 480

Operating System: Embedded Linux (Yocto)

This demo image includes the following demos:

• Home Automation

• White Goods

• Medical

Flashing the Image
To flash the Colibri iMX7 module a running U-Boot is required. Boot the module to the U-Boot prompt
and insert the SD card (See Section 22.6 or 22.7 on Copying Image to an SD Card) and enter:

• run setupdate

then to update all components enter:

• run update

Once the update is complete the board will reboot into the Storyboard Demo Launcher.

397

NXP

U-Boot
If no U-Boot is present on the board additional steps are required. Please refer to the instructions on
Toradex's website to get U-Boot on the board.

http://developer.toradex.com/knowledge-base/flashing-linux-on-imx6-modules

Copying Image to an SD Card - Linux
To copy the demo image to an SD card under Linux you first need to find the name of the attached SD card
located under /dev/. You can then use the dd utility to copy the demo image to a 4Gb (or greater) SD card.

dd if="CrankSoftware_demo_boardname.sdcard" of="/dev/sdX" bs=1M

Copying Image to an SD Card - Windows
To copy the demo image to an SD card under Windows you can use the Win32 Disk Imager utility.

1. Specify the image file to copy

2. Specify the SD card device

3. Click the Write button

Running the Image
Each demo image contains all of the software needed to boot and run the card on the supported devices.
Simply place the card in the appropriate SD card slot and power on the board. The cards will auto boot
into the Crank Software Demo Launcher.

Turn On or Off the Console
By default the Linux console is disabled to improve performance and to prevent any display artifacts
between application transitions. To re-enable the console do the following:

1. Connect a serial cable board

2. Interrupt the U-Boot startup sequence

3. env edit console

4. Switch ttymxc1 to ttymxc0

398

NXP

5. env save

To disable the console, repeat the above steps but instead switch ttymxc0 to ttymxc1.

399

Chapter 37. STMicroelectronics
Experience multi-market demo applications built with Storyboard on your favorite STMicroelectron-
ics platform. Crank Software demo images showcase Storyboard's design and development capabilities
and the application potential of popular platforms. Download [http://www.cranksoftware.com/demo_im-
age/stm] the demo image that corresponds with your hardware, which includes everything you need to get
and up and running in minutes.

STM32F429
Demo Details

Board: STM32429I-EVAL

Display: TFT LCD with resistive touchscreen

Rendering Technology: Chrom-ART Graphic Acceleration

Demo Resolution: 480 x 272

Operating System: FreeRTOS

This demo image includes the following demos:

• IoT - Home Automation

• White Goods

• Medical

STM32F439
Demo Details

Board: STM32439I-EVAL

Display: VGA TFT LCD with capacitive touchscreen

Rendering Technology: Chrom-ART Graphic Acceleration

Demo Resolution: 640 x 480

Operating System: FreeRTOS

This demo image includes the following demos:

• IoT - Home Automation

STM32 F7
Demo Details

Board: STM32F7 Discovery Kit (32F746GDiscovery)

400

http://www.cranksoftware.com/demo_image/stm
http://www.cranksoftware.com/demo_image/stm
http://www.cranksoftware.com/demo_image/stm

STMicroelectronics

Display: TFT LCD with capacitive touchscreen

Rendering Technology: Chrom-ART Graphic Acceleration

Demo Resolution: 480 x 272

Operating System: FreeRTOS

This demo image includes the following demos:

• IoT - Home Automation

• White Goods

• Medical

Required Hardware and Software
The STM32 demo images require the following:

• Storyboard Evaluation [https://www.cranksoftware.com/free-trial]

• STM32F746G-Discovery (“target platform”) or

• STM32F439l (“target platform”) or

• STM32F429l (“target platform”)

• STM32 ST-LINK Utility [http://www.st.com/web/en/catalog/tools/PF258168] used to download the
demo image to the platform

• Micro SD Card (“sdcard”) with a FAT filesystem

Package Contents
This STM32 demo images contain:

• Storyboard_STM32F746G_Discovery.bin

• Image to be downloaded to the target platform using the STM32 ST-LINK Utility

• Storyboard_STM324x9I__480_272_EVAL.bin

• Image to be downloaded to the target platform using the STM32 ST-LINK Utility

• Storyboard_STM324x9I__640x480_EVAL.bin

• Image to be downloaded to the target platform using the STM32 ST-LINK Utility

• demos/crank

• Sample company information Storyboard application for the STM32F746G-Discovery or ST-
M32F429

401

https://www.cranksoftware.com/free-trial
https://www.cranksoftware.com/free-trial
http://www.st.com/web/en/catalog/tools/PF258168
http://www.st.com/web/en/catalog/tools/PF258168

STMicroelectronics

• demos/fbake

• Sample white goods Storyboard application for the STM32F746G-Discovery or STM32F429

• demos/HomeAutomation-640

• Sample home automation 640 x 480 Storyboard application for the STM32F439

• demos/HomeAutomation-480

• Sample home automation 480 x 272 Storyboard application for the STM32F746GDiscovery or ST-
M32F429

• demos/medical

• Sample medical Storyboard application for the STM32F746G-Discovery or STM32F429

• demos/SB_App.txt

• Storyboard application definition file

STM32 ST-LINK Utility
In order to use the STM32 demo images the following steps must be performed. These steps are specific
to the STM32F746G_Discovery but use the correct .bin file for the STM32 target platform being used.

Write the “Storyboard_STM32F746G_Discovery.bin” file to the target platform using the STM32 ST-
LINK Utility.

1. Connect to the target platform (STM32F746G_Discovery) Storyboard Evaluation: STM32 Story-
board

2. Browse to the Storyboard_STM32F746G_Discovery.bin file

402

STMicroelectronics

3. The Storyboard_STM32F746G_Discovery.bin file is now loaded in the utility

4. Program the Storyboard_STM32F746G_Discovery.bin file to the target platform

403

STMicroelectronics

5. Start the programming process

Running the Demo
Now that the STM32 board has been flashed, the Storyboard demos can be run.

1. Mount the SD card and copy the contents of the evaluation “demos” directory to the SD card. Do
not create the “demos” directory on the card, only copy the HomeAutomation-480 directory and
SB_App.txt file.

404

STMicroelectronics

2. Unmount the SD card and place the card back into the target platform.

3. Reboot the target platform.

At this point the demo should load and be interactive via the touchscreen.

Importing the Demo into Storyboard Designer
To import the HomeAutomation-480 demo into Storyboard Designer:

1. Start Storyboard Designer

2. Select “File” > “Import”

3. From the dialog select “General” > “Existing Projects into Workspace”

4. Browse to the “demos” directory and select “Open”

5. The Projects area should now list the HomeAutomation demo, select Finish

6. You now will have the HomeAutomation demo in your workspace

Creating Your Own Demo
Follow these steps to create your own demo in Storyboard Designer for the STM32 target platform:

1. Create a new application with a screen resolution of 480x272.

2. Add content to your application

3. Simulate and test your application on the desktop to verify functionality

4. Insert the SD card in your system and mount it

5. Export your Storyboard application directly to the SD card

a. Right click on the Application file (.gde)

b. Select “Storyboard Export”

c. Select “Export Storyboard Embedded Engine”

d. Under “Select export directory” deselect the “Use same directory as selected model file” check-
box and select “Browse”

e. Browse to the SD card and create a new directory for your application

f. Select “Finish”

6. Edit the “SB_App.txt” file on the SD card and change the name of the application to load to be your
new application, including directory name and gapp file name.

7. Place the SD card into the target platform and reboot

405

Chapter 38. Microchip
Experience multi-market demo applications built with Storyboard on your favorite Microchip platform.
Crank Software demo images showcase Storyboard's design and development capabilities and the applica-
tion potential of popular platforms. Download [http://www.cranksoftware.com/demo_image/microchip]
the demo image that corresponds with your hardware, which includes everything you need to get and up
and running in minutes.

SAMA5D2

Demo Details
Image Name: CrankSoftware_Demo_sama5d2xplained.sdcard

Board: SAMA5D2 Xplained

Display: PDA TM4300B

Rendering Technology: Framebuffer

Demo Resolution: 480 x 272

Operating System: Linux

This demo image includes the following demos:

• IoT - Home Automation

• White Goods

• Medical

SAMA5D2 with 7 inch Display

Demo Details
Image Name: CrankSoftware_Demo_sama5d2xplained_7.sdcard

Board: SAMA5D2 Xplained

Rendering Technology: Framebuffer

Demo Resolution: 800 x 480

Operating System: Linux

This demo image includes the following demos:

• IoT - Home Automation

• White Goods

• Medical

406

http://www.cranksoftware.com/demo_image/microchip
http://www.cranksoftware.com/demo_image/microchip

Microchip

Copying Image to an SD Card - Linux
To copy the demo image to an SD card under Linux you first need to find the name of the attached SD card
located under /dev/. You can then use the dd utility to copy the demo image to a 4Gb (or greater) SD card.

dd if="CrankSoftware_demo_boardname.sdcard" of="/dev/sdX" bs=1M

Creating an Image - Windows
To copy the demo image to an SD card under Windows you can use the Win32 Disk Imager utility.

1. Specify the image file to copy

2. Specify the SD card device

3. Click the Write button

Running the Image
Each demo image contains all of the software needed to boot and run the card on the supported devices.
Simply place the card in the appropriate SD card slot and power on the board. The cards will auto boot
into the Crank Software Demo Launcher.

407

Chapter 39. Renesas
Experience multi-market demo applications built with Storyboard on your favorite Renesas platform.
Crank Software demo images showcase Storyboard's design and development capabilities and the applica-
tion potential of popular platforms. Download [http://www.cranksoftware.com/demo_image/renesas] the
demo image that corresponds with your hardware, which includes everything you need to get and up and
running in minutes.

RZ/A1

Demo Details
Processor: ARM Cortex-A9

CPU Speed: 400 Mhz

Rendering Technology: Software

Operating System: Linux

This demo image includes the following demos:

• Home Automation

• White Goods - Washing Machine

Flashing the Image
To flash the Storyboard demo to the RZ/A1 you will need to do the following:

1. Connect the J-Link to the RZ/A1 board and your computer (USB)

2. Power on the RZ/A1 board

3. Unpack the archive to a directory on your computer

4. Open the RZA1_demo directory

5. Run the FlashHomeAutomationDemo.bat or FlashWashingMachineDemo.bat script

6. When flashed, the RZ/A1 will reboot and run the Storyboard demo

408

http://www.cranksoftware.com/demo_image/renesas
http://www.cranksoftware.com/demo_image/renesas

Chapter 40. Linux

TI AM355 Starter Kit
The AM335x Starter Kit (EVM-SK) provides a stable and affordable platform to quickly start evaluation
of Sitara™ ARM® Cortex™-A8 AM335x Processors (AM3352, AM3354, AM3356, AM3358) and ac-
celerate development for smart appliance, industrial and networking applications. It is a low-cost develop-
ment platform based on the ARM Cortex-A8 processor that is integrated with options such as Dual Gigabit
Ethernet, DDR3 and LCD touch screen.

The following steps describe how to take a Storyboard sample and place it down on the TI AM335 board.
It is assumed that the TI AM335 board has been setup correctly running Linux and that it is connected via
a serial cable to either a laptop or desktop computer.

Step 1: Importing A Storyboard Sample

To import a Storyboard sample the user can right-click within the Navigator view and select Import or by
selecting Import Sample Project from the Application Model view.

In the Select dialog expand the Storyboard Development folder and select Storyboard Sample. (This dialog
box will be skipped if you selected Import Sample Project from the Application Model view.)

409

Linux

In the Import Sample dialog any sample can be used but for the purposes of this example the Trend sample
has been selected.

410

Linux

Step 2: Exporting A Storyboard Application

Once a Storyboard application is complete and ready to be placed on a target platform, it needs to be
exported from Storyboard Designer in a format that the Storyboard Embedded Engine can use. Right-
click the Storyboard application .gde file, located in the project folder in the Navigation View, and select
Storyboard Export > Export Storyboard Embedded Engine.

The Export Selection dialog is used to tell Storyboard Designer where to export the selected Storyboard
Application. Using the Select Transfer Method you can select if you want to export locally or remotely.
Selecting Filesystem and leaving the "Use same directory as selected model file" option checked will place
the data bundle for Storyboard Embedded Engine into the application's project directory. Deselecting the
option enables the data bundle to be placed in another location (e.g., USB drive, NFS mount, etc).

411

Linux

Selecting SCP Transfer enables you to remotely connect to your target platform and transfer via SCP.

412

Linux

Step 3: Selecting The Storyboard Embedded Engine
The Storyboard Embedded Engine is the optimized runtime component that resides on the target platform
that interprets the data bundle to display the Storyboard application. The Storyboard Embedded Engine is
categorized by operating system, system architecture, and rendering technology.

All the supported Storyboard Embedded Engines are shipped with Storyboard and are located under the
Storyboard_Engine directory.

Note

For the purpose of this example, the Storyboard application and Storyboard Embedded Engine
will be exported to a USB drive.

To run the Storyboard application on the TI AM335 a Linux, Armle, OpenGL ES runtime is required.
Copy the linux-tiam335x-armle-opengles_2.0-obj Storyboard Embedded Engine and place it on the USB
drive along with the Storyboard application that was just exported.

Step 4: Configuring The Target Platform
The USB drive with the Storyboard application along with the correct Storyboard Embedded Engine can
now be ejected from the laptop/desktop and connected to the TI AM335.

The following commands are to be executed within the serial terminal connected to the TI AM335.

Login to the TI AM 335 and mount the USB drive:

login: root

mount /dev/sda1 /mnt/usb

Now, the Storyboard SB_PLUGINS specific environmental variable and an addition to the
LD_LIBRARY_PATH environment variable need to be made:

export SB_PLUGINS=/mnt/usb/linux-tiam335x-armle-opengles_2.0-obj/plug-
ins

export LD_LIBRARY_PATH=/mnt/usb/linux-codesourcery-armle-open-
gles_2.0-obj/lib:$LD_LIBRARY_PATH

Step 5: Running The Storyboard Application
With the needed environmental variables now set, the next step is to run the Storyboard application by
passing it to the Storyboard Embedded Engine.

413

Linux

/mnt/usb/linux-codesourcery-armle-opengles_2.0-obj/bin/sbengine /mnt/
usb/storyboard_export/trend.gapp

Raspberry Pi

The easiest way to get the Raspberry Pi up and running with a Storyboard application is by using the
following steps:

1. Follow the steps in the "Getting Started with NOOBS" video from the Raspberry Pi website to get
the Pi up and running with the Raspbian OS. NOTE: Configure Raspbian to boot to the console not
the windowing system.

https://www.raspberrypi.org/help/noobs-setup/

2. Use the linux-raspberry-armle-opengles_2.0-obj runtime located in the Storyboard_Engine dir of
your SB installation

3. Place the SB Pi runtime on the hardware.

4. Before executing the Storyboard runtime, the following environmental variables need to be setup.
This example assumes the runtime and application were placed in a /crank dir

export SB_PLUGINS=/crank/linux-raspberry-armle-opengles_2.0-obj/plugins

export LD_LIBRARY_PATH=/crank/linux-raspberry-armle-opengles_2.0-obj/lib:
$LD_LIBRARY_PATH

5. Execute the runtime with mouse and keyboard support:

/crank/linux-raspberry-armle-opengles_2.0-obj/bin/sbengine -vv -oscreen_mgr,swcursor -odev-in-
put,mouse=/dev/input/event0,kbd=/dev/input/event1 /crank/your_sb_app.gapp

414

Part III. Release Notes

Table of Contents
41. Release Notes 6.2 ... 417

New Features and Functionality ... 417
Designer .. 418
Engine ... 418
Lua Scripting .. 419
Behavioural Changes and Deprecations ... 419
Known Issues ... 419

42. Release Notes 6.1 ... 421
New Features and Functionality ... 421
Storyboard Designer .. 421
Storyboard Engine ... 422
Lua Scripting .. 422
Behavioural Changes and Deprecations ... 422

43. Release Notes 6.0 ... 423
New Features and Functionality ... 423
General .. 424
Storyboard Designer .. 424
Storyboard Engine ... 424
Behavioural Changes and Deprecations ... 425

416

Chapter 41. Release Notes 6.2

New Features and Functionality
• Storyboard Engine ported to ITRON operating system.

• Storyboard IO over TCP/IP has been introduced as a native functionality available on target platforms
where TCP/IP connectivity is part of the standard configuration. This means that you can now send and
receive Storyboard events over the network.

• The Lua action has been enhanced to better support Lua object oriented programming techniques. Lua
object modules can be referenced directly now as callbacks further encapsulating the context of execu-
tion and removing the need for some boilerplate glue logic.

• Fill and rectangle render extensions now have a corner radius property for rounded rectangles. This
feature can be used to help reduce the memory or storage footprint by replacing images that may have
been used for the same visual effect.

• For some shadowed scenarios where a rounded rectangle may not offer enough visual appeal nine-slice/
nine-patch images can be used. Nine-patch images can now be rendered directly from flash and rotated
using no additional memory for a scalable UI component and can be compressed as RLE for additional
memory savings.

• Storyboard Designer's now includes the ability to turn performance logging and execution tracing on
and off from the IO Connector. When coupled with the TCP/IP Storyboard transport this creates some
very powerful remote analysis possibilities.

• The performance log viewer includes event data plotting and visualization tools that allow you to look
at the data gathered in performance trace logs and put it into context with triggering events and screens
of execution.

• Redraw time, CPU consumption and Memory Usage information is plotted on platforms where this
information is available.

• Individual animation variables can be plotted as they change over time.

• Specific problem solving tasks are made easier with pre-configured data plots.

• Statistical plotting functionality allows users to create their own plots by extracting metrics that are
relevant for their areas of investigation.

• A performance Lua API has been added that allows user applications to inject data markers and trace
points into the performance log. Coupled with the plotting and visualization this can put user code
execution in context of other metrics being considered.

• New algorithms for software rendering scaling and rendering operations resulted in a 50% reduction of
dynamic memory consumption when these operations are used independently.

• The compare and merge operations on Storyboard Designer projects are more consistent and three way
comparisons with source control systems (git/svn) are faster.

417

Release Notes 6.2

Designer
• The Find References action is now partnered with a find that will search for the selection within other

files of the project. Useful for finding model and image references in Lua files.

• Component creation will now allow you to convert the original component source to a component itself.
Copying and pasting a component within a project will maintain that component's relationship as a
component for future updates.

• The animation preview now supports looping of the animation that is being previewed and limits the
preview to the frames that will be shown by the runtime.

• All animation step variable keys will be included in the refactoring operations that occur when the names
of variables or model objects are changed.

• Drag and Drop of model content now maintains consistent z-order.

• Direct inline text editing uses the correct font and display.

• Photoshop import and re-import does a more accurate job representing multi-line text and text with
alignment attributes where it is possible to do so.

• The C/C++ Event Header can now be built from the command line.

Engine
• Layer and table scrolling can now be dynamically enabled/disabled through the new scroll_enabled

attribute or grd_scroll_enabled variable.

• Table resize operations will no longer reset the current scroll offset unless the scroll offset would result
in the data not being visible.

• Scrolling operations are smoother and snapping takes advantage of the direction to ensure that snapping
operations occur to the right context boundary.

• OpenGL rendering quality improvements:

• Alpha layer blending blends smoothly over the full alpha value range.

• 3D model camera settings (Z in particular) properly show the model.

• Single pixel offset incorrect for certain rectangles.

• Custom shaders with UV wrap don't need -oresource_mgr,image_block_size=-1

• Removed custom shader requirement for -oresource_mgr,image=-1,font=-1 option

• Proper format support for the GL_BGRA_EXT

• Logging and verbosity can now be redirected over an SBIO channel as events.

• Performance logging filename options now support appending, date and time stamps.

• The fbdev software render manager allows the selection of framebuffers to render to.

• Android and Windows will correctly restore themselves after coming back from sleep.

418

Release Notes 6.2

Lua Scripting
• A new Lua API has been added to allow controls to be resized or moved in a relative sense using the

same anchoring functionality available in Designer when working interactively. Scale controls with a
single command without having to hit x/y/width/height values independently.

Behavioural Changes and Deprecations
• A new font-manager option, -ofont_mgr,linegap has been introduced to disable the linegap offset that

Storyboard Engine inserts with certain fonts (notably Noto). This option is disabled by default to main-
tain compatibility with the current Storyboard Engine, but will be enabled by default in the next major
version of Storyboard.

• A new model-manager options, -omodel_mgr,block_sbio_sends has been introduced that will adjust the
blocking behaviour of Storyboard Engine's SBIO send operations. The default configuration is to not
block sending calls from the UI as that has the effect of potentially deadlocking the UI, however clients
can revert the behaviour to the older behaviour by indicating that sends should be blocked.

• Multi-touch event compression enabled by default. This option should have no ill effect on clients but
an option to remove all input event compression added

Known Issues
• OpenGL rendering clients should see an improvement in visual quality for the 6.2 release but that im-

provement comes at the cost of more GLSL shader operations.

• Some clients may observe a longer load time or a slight degradation in performance depending on
the sophistication of their GPU technology.

• Dynamic injection is used on the shaders and patterns such as:

• gl_FragColor.r = grd_c_r;

• gl_FragColor.g = grd_c_g;

• gl_FragColor.b = grd_c_b;

• gl_FragColor.a = col.a;

• May require conversion to the style of:

• gl_FragColor = vec4(grd_c_r, grd_c_g, grd_c_b, col.a);

• Direct editing of clipped, multi-line, wrapped or ellipsis text will not show the cursor in the correct
location.

• Starting and stopping and appending results to the performance log may produce unusual display plots.

• Animated GIFs consume memory for each frame that is rendered and the frames can't be incrementally
loaded making them poor choices for limited resource targets.

• The Metrics View does not report on all static consumers of memory including the display framebuffers,
canvas and external render extensions and rich text.

419

Release Notes 6.2

• Debugging Lua on Linux systems may not work through the one click launcher, but the debugger con-
nection may need to be launched before the main application.

• Some exceptionally large Lua files may identify as corrupt and not show properly in the outline.

420

Chapter 42. Release Notes 6.1

New Features and Functionality
• Text shaping for complex scripts has been added as a new plugin and is supported on MacOS, QNX and

most Linux platforms that use FreeType as their font manager. This allows complex text scripts such
as Thai to be properly rendered without the use of third party commercial integrations to Storyboard
Engine:

• https://en.wikipedia.org/wiki/Complex_text_layout

• A new text overflow option that enables individual character wrapping has been added to the Storyboard
text render extension.

• The Performance Log Editor (for .plog files) has received a makeover. It is faster to load, handles large
log files more capably and re-organizes the information presented to allow you to dig into issues more
effectively. It's just way better!

• Support for 9-patch (9-slice) images that can be loaded directly from flash further reducing the dynamic
memory requirements for scalable UI's on embedded platforms.

• A number of enhancements have been made to for deep embedded C/C++ application developers using
the C Callbacks action feature and the Storyboard API.

• The export is available directly in the context of the standard export dialog, not just as a standalone
exporter.

• Model objects such as controls and layers that are going to be used within C/C++ code can be given
symbolic names in their properties that can be used to isolate changes to C/C++ code as the application
UI is refactored. Look for this new label in the properties panel.

• The Storyboard API has been enhanced with new accessor functions that make it easier to read, write
and manipulate variable values from the Storyboard Engine. We also took the opportunity to clarify
the previous API's with new data types that add absolute clarity to how memory and resources are
to be managed through this API.

Storyboard Designer
• Exporting has gotten a whole lot wiser and faster too! Exporting the Storyboard model and resources to

a filesystem or through an SCP network transfer now has the option of only pushing changed content
which significantly improves round trip time for large projects. No more checking slack while your
project downloads and launches!

• The Copy Path command can be customized in the preferences to use single quotes rather than double
quotes to match project coding standards. The command has been made accessible as a keyboard short-
cut (Ctrl+Alt+C Windows/Linux or Cmd+Option+C Mac) and if you have multiple objects selected
will create paths for each entry onto the clipboard.

• Launching the Storyboard Simulator was always accessible from within a model editing environment
via Ctrl+L keyboard shortcut, but that has been expanded to a new shortcut available when working in
Lua files: Ctrl+Alt+L on Windows/Linux and Ctrl+Cmd+L on Mac

421

Release Notes 6.1

• Photoshop file import will generate font variables that are more aligned with the original font names
rather than the name of the substituted font.

• Resources added to the export configuration can be removed rather than just excluded.

• Resizing an application will now propagate changes to all of the Design States.

• Import time for 3D model files in OBJ format has been reduced significantly.

• Reduced typing input delays that occured on certain user interactions.

Storyboard Engine
• Layer variable resolution (${layer}) has been extended to a few locations where it was previously not

available, namely scrolling, animations and the Lua API.

• Order of magnitude performance improvements for non-latin, unshaped, text rendering.

• Invalid UTF-8 character content for text content no longer causes rendering delays.

• Storyboard Virtual Filesystem (SBVFS) now supports multiple filesystem roots providing more flexi-
bility for resource storage and optimizing development time using minimal flash updates.

Lua Scripting
• The gre.get_string_size API now allows you to get the bounds of wrapped text using the same breaking

and wrapping algorithms that the render extension uses. Use this new API instead of hand-crafting your
own text breaking algorithm in Lua!

• Performance improvements align the costs for set_data, set_value, set_control_attrs

• The GRE DOM interface (libgre-plugin-luagredom plugin) has been enhanced with additional API ex-
posing common operations (set/get position, bounds, visibility).

• Inline editor documentation for GRE DOM and GRE Canvas functions.

• Code completion shows all functions available from files in the scripts directory.

Behavioural Changes and Deprecations
• Variables bound to the previous text wrapping option (wrap) will be automatically upgraded to the new

overflow option introduced in Storyboard 5.3. Older runtime files (GAPP) will continue to work as
expected but new files generated starting with 6.1 will only use the overflow option in the export. If
wrapping was dynamically controlled as a variable then the model load into Designer will unbind this
variable since the wrap property is no longer supported using the same variable parameters.

422

Chapter 43. Release Notes 6.0

New Features and Functionality
• Standalone Storyboard application file compare/merge utility included with Storyboard to support con-

tinuous integration and automated build workflows.

• Dark UI theme support for the Storyboard Designer development environment.

• The new Resource Export configuration editor allows fine grained control over how resources are ex-
ported and managed for embedded targets. Used with the new Project Metrics view, this replaces the
previous export control in the Simulator/Export dialog.

• The new Project Metrics view allows application developers to understand the full memory and storage
costs associated with their application as it is being designed. The Project Metrics works hand in hand
with the new Resource Export configuration editor to show the different costs associated with various
target deployment scenarios ranging from SW rendering/RT Exec to OpenGL/RTOS deployments. This
is a powerful tool for the specialized activity of embedded application deployment.

• Design States offer a brand new way for application developers to see how their application will look
in different scenarios. A perfect compliment to the existing screen-based organization states of an ap-
plication's user interface, design states show you how a particular screen will look at different times
based on changes caused by animations or external data. A great tool to visualize effects that occur in
multiple screen contexts!

• Storyboard has revamped its translation and internationalization functionality to better address the needs
of application developers and align with industry standard practices. The new Text Translation view
shows what text content has been translated, what that translation value is and includes hints related to
the correct visibility of the text. To extend translation to internationalization and some light theming
support, users can now add additional variables such as fonts, point sizes and control metrics as attributes
to be changed when languages change. Storyboard Engine supports this new functionality via a Lua
module that allows fast and easy application language customization using the same translation text
sources as in Designer.

• Storyboard 6.0 introduces an optimized OpenGL scene graph renderer. This is a complete re-engineering
of the Storyboard Engine rendering pipeline to interface more optimally with high-performance 3D
GPU technology in more configurations on more hardware platforms. In some scenarios, performance
improves by up to 150%!

• Storyboard Lite Engine is a memory footprint reduced version of the Storyboard Engine specifically
targeted at resource (memory and flash limited) constrained embedded target hardware platforms. In
addition, the standard performance optimization tuning that occurs with each Storyboard Engine release,
this configuration has been created with an eye to optimizing execution for low memory systems. A
direct to C callback API allows developers to simulate environments with Lua and replace that func-
tionality with compiled C code on target. The Resource Export configuration and the Project Metrics
view have been specifically organized to give developers the insight they need to tune a Storyboard
Lite Engine deployment.

• A feature scalable user interface has been introduced to Storyboard Designer to provide a common UI
development tool that easily adapts itself to enable only those features available on your target platform.
The feature sets allows developers to create rich multi-touch or gesture-based applications that leverage
advanced 3D graphics and multimedia capabilities of OpenGL Storyboard Engine platforms in the same

423

Release Notes 6.0

environment as they would create svelte and beautiful user interfaces for the more resource-constrained
Storyboard Lite Engine platforms. One platform environment supports it all!

General
• New Scrolling Functionality

• New scroll stop/cancel action

• New auto scroll detected trigger event

• Unified table cell and pixel gesture-based scrolling for tables

• Alignment option for table and layer scrolling

• Animation engine based auto scroll

• Improved experience for overlaid scrolling table and layers

• Named data changes allow many variables to be set at once in a re-usable manner

• Text and Rich Text recognize U+200B character as a zero width break character

• New C Function callback action and API for use with Storyboard Lite Engine

• Exported C/C++ Headers contain model file and build details

Storyboard Designer
• Performance logs now contain build and release information

• Performance logs now contain animation trace information

• Search for and count image references in model from the Images view

• Actions/Variables/Render Extensions are now grouped in the Application view

• Hotkey bindings for fill horizontal, vertical, container commands

• Copy/Paste of controls and groups no longer insert an automatic position offset

• New model elements are automatically selected as they are created

• Unlocking a child control/group will prompt to unlock the parent layer if locked

• Storyboard Designer renders previously unsupported OTF/TTF fonts (NotoSansCJK)

• IO Connector event generation view can be opened to a floating window

• Command line utility for resizing Storyboard applications

Storyboard Engine
Lua API Enhancements

• Callback context contains FQN of what is invoking the call in active_context

424

Release Notes 6.0

• Storyboard IO channel name available using gre.env(“greio_channel”)

• New gre API constants for alignment TOP CENTER BOTTOM LEFT RIGHT

• Symbolic API for alignment gre.get_alignment()

• Symbolic API for alpha as a percentage gre.get_alpha()

• Inbound and outbound events are now generated on multi-touch interfaces

• Inbound and outbound events are now delivered to all children/layers affected

• Screen Path screen transition arguments for top/bottom directions have been changed to match the doc-
umentation, they were previously reversed.

• Events bound to variables will now be delivered to the layer of the context if one is applicable.

• New Storyboard Engine API

• Function callback for easier diagnostic logging

• Enhanced model API for use with C Callback action.

• Image Load Manager

• An interface has been created to allow plugins to add their own discrete image format loaders or to
override the internal image loaders.

• Font Manager Plugin

• Select TrueType or Bitmap or Monotype rendering using the same engine

• Dumping all font resources (gre.dump_resource) will now completely drop the font from memory
instead of holding a cached reference. This reduces memory overall, but can have an impact on per-
formance if the font needs to be reloaded.

• Comprehensive and efficient 16 bit display rendering support

• Design in 32bit with target content export in 16bit for storage savings

• Mixed mode 32bit backing and 16bit display configurations available

• Memory Management

• Discontinuous heap management and engine specific memory management

• Model memory footprint was reduced by an average of ~16%, and as high as 42% reduction in some
areas

Behavioural Changes and Deprecations
• The multi-touch events mtXmove, mtXpinch and mtXrotate have been removed and replaced with mt-

move, mtpinch and mtrotate events containing a data payload.

• The Lua argument context no longer references context_target, that value has been replaced with a new
variable active_context that is the FQN of the object that is invoking the Lua action.

425

Release Notes 6.0

• The second argument to Lua callback functions was deprecated in Storyboard Engine 2.x and has now
been removed entirely.

• When using C/C++ resource exports, all Lua files would be loaded. Now only those files in the scripts
directory itself are loaded.

• Storyboard Engine command line option changes:

• -orender_mgr,rotated=[90|180|270] changed to -orender_mgr,rotate=[90|180|270]

• The display render manager option now compliments the fb option to help specifically identify which
display index should be used.

• Storyboard Engine linux-*-fbdev has been replaced by the generic linux-*-swrender

• Storyboard Engine win32-x86-win32 has been replaced by win32-x86-swrender

• When using an animated GIF, an unbounded resource manager image cache configuration must be used

• Storyboard Designer no longer supports the import and conversion of Storyboard model files prior to
version 4.x. These model files can be converted with any earlier version of Storyboard Designer ranging
from 4.0 - 5.3. Contact support@cranksoftware.com for more assistance if required.

426

Part IV. Licensing

Table of Contents
44. Storyboard Licensing .. 429

428

Chapter 44. Storyboard Licensing
Storyboard includes several third party royalty free open source software components. A description of the
third party components, their licenses and the context of their use within Storyboard is located on the Sto-
ryboard Product Licensing [http://www.cranksoftware.com/product-licensing] page located at http://
www.cranksoftware.com/product-licensing.

429

http://www.cranksoftware.com/product-licensing
http://www.cranksoftware.com/product-licensing
http://www.cranksoftware.com/product-licensing

	Crank Storyboard
	Table of Contents
	Chapter 1. What Is Storyboard
	A New Way to Build Embedded User Interfaces
	Storyboard Designer and Storyboard Engine
	A Non-Compiled Solution
	Storyboard Software Updates
	Compatibility with Previous Versions

	Chapter 2. Storyboard Architecture
	Application Model Hierarchy
	Event Driven Interaction Model
	Events to External Applications

	Data Binding for Dynamic Behavior
	Context and Variables
	Storyboard Model Internal Variables
	Layer and Layer Instance Variables
	Group variables
	Control variables
	Table variables

	Animation Definitions

	Chapter 3. Typical Development Workflow
	Start a New Project: From Photoshop or from Scratch
	Create and Organize Screen Content
	Bind Events to Invoke Actions
	Simulate and Export Model for Engine

	Chapter 4. Storyboard Designer Environment
	Storyboard Designer Workbench
	Anatomy of a Storyboard Designer Project
	Storyboard Designer Editor
	Editing Content
	Editor Toolbar
	Direct Editing

	Storyboard Resource Export Configuration Editor
	Managing Configurations
	Resource Tree
	Resource Export Options
	Application Footprint Preview

	Storyboard Designer Views
	Actions View
	Application Model View
	Animation Timeline View
	Working with Animations
	Record Animation
	Add Animation
	Preview Animation

	Images View
	Layers View
	Metrics View
	Navigator View
	Outline View
	Problems View
	Properties View
	Component View
	Variables View
	Variable Creation
	Generating Events on Variable Change

	Notes View

	Storyboard Designer Utilities
	Design Notes
	GoTo Dialog
	Storyboard Search Dialog
	Resize Storyboard Application
	Proportionally Scale Application and Contents
	Scale Application and Reposition Contents
	Custom resizing options
	Resizing GDE from the Command Line

	Resource Clean Up Wizard
	Consolidate Images Wizard
	Trim Images Wizard
	Split Images Wizard
	Merge Control Images

	Storyboard Performance Log Viewer
	Predefined Record Plots
	Custom Record Plots
	Animation Plots
	Analyzing Applications Using Record Plots
	Toggling Event Lines
	Plot Selector
	Chart UI Elements and Usage

	Chapter 5. Creating A Storyboard Project
	New Empty Storyboard Project
	New Project from a Photoshop PSD File
	New Project from a Storyboard Sample
	New Project from Storyboard Embedded Engine File
	Existing Project Import
	Working with Multiple Application Design Files
	Controlling Feature Enablement on Projects

	Chapter 6. Adding Content to your Application
	Object Naming and Reserved Namespaces

	Chapter 7. Working with Events
	Event Editor
	Opening the Event Editor
	Adding an Event Definition
	Data Element Types
	Changing Element Array Length
	Reordering Event Data Elements
	Editing Min and Max Attributes

	Using the Storyboard IO Connector
	Live Mode
	Saved Mode
	Data Element Editors

	Storyboard IO Event C/C++ Header Export

	Chapter 8. Connecting Events to Actions
	Event and Action Matching Rules

	Chapter 9. Using Variables to Create a Dynamic UI
	Table Variables
	Triggering Events on Variable Changes

	Chapter 10. Creating and Applying Animations
	Animation Action
	Timer Keyframe Animations
	Screen Transition Animations

	Chapter 11. Simulating your Application
	Chapter 12. Scripting with Lua
	Lua Action Callback Function
	Passing Extra Parameters to Functions
	Lua Execution Environment
	Asynchronous Lua Support
	Lua Debugger
	Lua Executables

	Chapter 13. Working with C Callbacks
	What are C Callbacks?
	C Callbacks on Windows
	Example C Callback
	C Callback Export Labels
	Exporting C Callbacks
	C Callback Export Wizard
	C Callback Command Line Export

	Chapter 14. Working with Design States
	What are Design States?
	Creating a Design State
	Editing a Design State
	Master/State Context
	Storyboard Editor
	Properties View
	Variables View
	Manually Editing Design States
	Animation Arguments
	Variable Change Argument

	Removing Changes From Design States
	Hiding/Showing Design States
	All Design States
	Individual States

	Converting a Design State
	Animation Preview with Design States

	Chapter 15. Working with Images
	Image Rotation
	Rotate At Center
	Rotate At Custom Point

	Alpha and Transparency in Images
	Creating Scalable 9-Patch Bitmap Images
	Multi-Frame Animated GIF Images

	Chapter 16. Working with Text
	Rich Text Styling and Markup
	Translation and Internationalization
	Text Translation View
	Translating a Storyboard Application
	Creating and Editing Translation Content CSV Files

	Script Specific Text Shaping and Layout

	Chapter 17. Working with Touch, Gestures and User Input
	Configuring Touchscreen Input
	Windowed Applications
	Gesture Support
	Multi-Touch Gestures
	gre.mtmove
	gre.mtpinch
	gre.mtrotate

	Enabling Gesture In Your Application

	Chapter 18. Creating Lists and Tables
	Chapter 19. Working with Scrolling Content
	Scroll Synchronization

	Chapter 20. OpenGL and 3D Rendering
	Storyboard 3D Rendering Model
	3D Rendering Fundamentals
	The Scene Graph and Transformations
	Material Support
	Animation and Variable Support
	Mapping FBX Animation data into meaningful structures
	Support for Animation Takes

	Troubleshooting 3D Problems
	Working with OpenGL Shaders, Transforms and Compressed Textures
	3D Transforms and Custom Shaders
	Custom Shader Support
	Compressed Textures

	Chapter 21. Working with Audio and Video
	Media Backend Services
	GStreamer Application
	GStreamer Pipeline
	FFmpeg Plugin

	Chapter 22. Multi-File Application Development
	Simulating and Exporting Multiple Model Files
	Resolving Conflicts and Synchronizing Changes

	Chapter 23. Reusable Graphical Components
	Creation Guidelines and Conventions
	Editing Components and Propagating Changes

	Chapter 24. Collaboration and Team Development
	Revision Control System Integration
	Comparing and Merging Model Files
	Comparing and Merging Projects
	Exporting Storyboard Projects for Sharing

	Chapter 25. Exporting and Running on your Embedded Target
	Export Workflow
	Selecting Files For Export

	Deployment Bundle Packages
	Storyboard Embedded Engine (GAPP)
	Storyboard Compressed Package (SBP)
	Native Android Application (APK)
	Native iOS Application
	Windows Standalone Launcher (EXE)
	Storyboard Embedded Resource Header (C/C++)

	Export Transfer Methods
	Filesystem
	SCP Transfer

	Exporting from the Command Line
	Exporting from the Command Line using Export Configuration
	Additional Options

	Setting up Storyboard Engine
	Font Environment Variable
	QNX Screen Environment

	Running Storyboard Engine
	Target Specific Configurations
	Linux x86, armle
	FBDEV
	Libraries:

	TSLIB
	Libraries:

	MTDEV
	Determining the Touch Device
	Input Bounds Parameters
	Libraries:

	SBIO

	Microsoft WinCE, Compact7 win32, armle
	Requirements:
	Libraries:

	Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle
	Requirements:

	Chapter 26. Working with Storyboard Lite Platforms
	What is Storyboard Lite
	Storyboard Lite Installers
	Design Considerations

	Chapter 27. Working with Mobile Platforms: Android and iOS
	Exporting to iOS Devices
	Xcode
	iOS Developer Account
	Code Signing Certificate
	Device IDs
	Application IDs
	Provisioning Profile
	Adding Extra Libraries for iOS

	Exporting to Android Devices
	Adding Extra Libraries for Android
	Storyboard Lua Android Integration
	Android Lua Java API
	Storyboard Lua Android Example

	Chapter 28. Sending and Receiving Data with Storyboard IO
	Storyboard IO Transport protocols
	Connecting to a Storyboard Application
	Storyboard IO Over TCP

	Sending Events to a Storyboard Application
	Event Naming Conventions
	Serialized Data and the Event Format String

	Setting Application Data
	Receiving Events from a Storyboard Application
	Debugging Storyboard IO
	Debugging egress (Storyboard Engine sending to backend)
	Debugging ingress (Storyboard Engine receiving from backend)

	Storyboard IO Utilities
	iogen
	iorcv

	Chapter 29. Optimizing Your Storyboard Application
	Measuring Performance
	Action Execution Performance Considerations
	Choosing the Right Image Format(s) Bit Depth
	Framerate (Frames Per Second)
	Scaling Images
	Reducing Output Verbosity
	Adjusting Engine Rendering Options
	Managing Resource Memory
	OpenGL Scene Graph Optimization

	Chapter 30. Extending Storyboard Functionality
	User Defined Action Templates
	User Defined Render Extension Templates

	Chapter 31. Structuring Your Photoshop Import Content
	PSD file Structure for Import into Storyboard
	PSD File Requirements
	Application Model Hierarchy
	Artboards
	Layer Effects and Blending Modes
	Naming Requirements
	Naming Conventions
	name_layer
	name_group
	name_control
	name_up and name_down

	Common Photoshop Elements
	Transparency
	Naming Convention Deviation
	Sub Group Folders

	Chapter 32. Re-Importing Photoshop and Updating Content
	Re-Importing Photoshop Content

	Appendix A. Storyboard Lua API
	Storyboard Lua API
	gre.APP_ROOT
	gre.SCRIPT_ROOT
	gre.PLUGIN_ROOT
	gre.LOG_ constants
	gre.LEFT, gre.RIGHT, gre.CENTER, gre.TOP, gre.BOTTOM
	gre.OPAQUE, gre.TRANSPARENT
	gre.set_data
	gre.get_data
	gre.set_value
	gre.get_value
	gre.resolve_data_key
	gre.get_control_attrs
	gre.set_control_attrs
	gre.get_table_attrs
	gre.set_table_attrs
	gre.get_table_cell_attrs
	gre.get_group_attrs
	gre.set_group_attrs
	gre.get_layer_attrs
	gre.set_layer_attrs
	Render Effects:
	blur
	geometry

	gre.set_layer_attrs_global
	gre.screen_attach_layer
	gre.resize_control
	gre.move_control
	gre.move_layer
	gre.set_focus
	gre.get_focus
	gre.send_event
	gre.send_event_target
	gre.send_event_data
	gre.greio_disconnect
	gre.clone_object
	gre.delete_object
	gre.clone_control
	gre.delete_control
	gre.poly_string
	gre.get_string_size
	gre.load_resource
	gre.dump_resource
	gre.walk_pool
	gre.load_image
	gre.timer_set_timeout
	gre.timer_set_interval
	gre.timer_clear_timeout
	gre.timer_clear_interval
	gre.animation_create
	gre.animation_add_step
	gre.animation_destroy
	gre.animation_trigger
	gre.animation_stop
	gre.animation_pause
	gre.animation_resume
	gre.animation_create_tween
	gre.touch
	gre.key_up
	gre.key_down
	gre.key_repeat
	gre.redraw
	gre.quit
	gre.thread_create
	gre.receive_event
	gre.env
	gre.log
	gre.mstime
	gre.rgb
	gre.torgb, gre.to_rgb
	gre.to_alignment
	gre.to_alpha
	gre.rtext_text_extent
	gre.perf_trace_point
	gre.perf_trace_duration

	Storyboard Lua Canvas API
	gre.get_canvas
	CANVAS:get_dimensions
	CANVAS:fill
	CANVAS:fill_rect
	CANVAS:fill_poly
	CANVAS:stroke_line
	CANVAS:stroke_rect
	CANVAS:stroke_poly
	CANVAS:clear_rect
	CANVAS:set_pixel
	CANVAS:set_alpha
	CANVAS:set_line_width
	CANVAS:draw_image
	CANVAS:draw_text

	Storyboard Lua DOM Module
	gredom
	gredom.get_application
	gredom.get_object
	gredom.get_control
	gredom.get_table
	gredom.get_group
	gredom.get_layer
	gredom.get_layer_instance
	gredom.get_screen

	DOMOBJECT
	DOMOBJECT:get_name
	DOMOBJECT:get_type
	DOMOBJECT:get_parents
	DOMOBJECT:get_children
	DOMOBJECT:get_variables
	DOMOBJECT:get_value
	DOMOBJECT:get_data
	DOMOBJECT:set_value
	DOMOBJECT:set_data
	DOMOBJECT:key

	CONTROL
	CONTROL:get_x
	CONTROL:get_y
	CONTROL:get_width
	CONTROL:get_height
	CONTROL:get_position
	CONTROL:get_size
	CONTROL:get_bounds
	CONTROL:get_hidden
	CONTROL:set_x
	CONTROL:set_y
	CONTROL:set_width
	CONTROL:set_height
	CONTROL:set_position
	CONTROL:set_size
	CONTROL:set_bounds
	CONTROL:set_hidden
	CONTROL:hide
	CONTROL:show
	CONTROL:clone
	CONTROL:delete

	TABLE
	TABLE:get_rows
	TABLE:get_cols
	TABLE:cell_key

	GROUP
	GROUP:get_x
	GROUP:get_y
	GROUP:get_hidden
	GROUP:set_x
	GROUP:set_y
	GROUP:set_hidden
	GROUP:hide
	GROUP:show
	GROUP:clone
	GROUP:delete

	LAYERINSTANCE
	LAYERINSTANCE:get_layer
	LAYERINSTANCE:get_x
	LAYERINSTANCE:get_y
	LAYERINSTANCE:get_width
	LAYERINSTANCE:get_height
	LAYERINSTANCE:get_position
	LAYERINSTANCE:get_size
	LAYERINSTANCE:get_bounds
	LAYERINSTANCE:get_alpha
	LAYERINSTANCE:get_hidden
	LAYERINSTANCE:set_x
	LAYERINSTANCE:set_y
	LAYERINSTANCE:set_width
	LAYERINSTANCE:set_height
	LAYERINSTANCE:set_position
	LAYERINSTANCE:set_size
	LAYERINSTANCE:set_bounds
	LAYERINSTANCE:set_alpha
	LAYERINSTANCE:set_hidden
	LAYERINSTANCE:hide
	LAYERINSTANCE:show

	Lua DOM Samples

	Appendix B. Storyboard IO API
	Storyboard IO API
	gre_io_add_mdata
	gre_io_close
	gre_io_free_buffer
	gre_io_grow_buffer
	gre_io_open
	gre_io_receive
	gre_io_send
	gre_io_send_mdata
	gre_io_serialize
	gre_io_size_buffer
	gre_io_unserialize
	gre_io_zero_buffer
	gre_io_get_error_codes
	gre_io_get_error_message

	Appendix C. Storyboard Engine and Plugin Options
	Storyboard Engine Plugin Options

	Appendix D. Standard Event Definitions
	Standard Event Definitions
	System Events
	gre.init
	gre.quit
	gre.redraw
	gre.rendermgr.error

	Pointer Events
	gre.press
	gre.motion
	gre.release
	gre.touch
	gre.mtevent
	gre.mtpress
	gre.mtmotion
	gre.mtrelease
	gre.inbound
	gre.outbound
	gre.mtinbound
	gre.mtoutbound

	Keyboard Events
	gre.keydown
	gre.keyup

	Screen Manager Events
	gre.screenshow.pre
	gre.screenshow.post
	gre.screenhide.pre
	gre.screenhide.post

	Focus Events
	gre.gotfocus
	gre.lostfocus

	Table Events
	gre.table.viewport
	gre.cell.gotfocus
	gre.cell.lostfocus

	Table Scroll Events
	gre.table.drag_start
	gre.table.drag_stop
	gre.table.scroll_trigger
	gre.table.scroll_start
	gre.table.scroll_stop
	gre.table.scroll_cancel
	gre.table.scroll_complete

	Layer Scroll Events
	gre.drag.start
	gre.drag.stop
	gre.scroll.trigger
	gre.scroll.start
	gre.scroll.stop
	gre.scroll.cancel
	gre.scroll.complete

	Mobile Events (Android and iOS)
	gre.mobile.on_pause
	gre.mobile.on_resume
	gre.mobile.on_background

	Android Events
	android.onBack

	Windows Embedded Compact 2013 (WEC2013) Events
	win.gesture.pinch
	win.gesture.[up|down|left|right|unknown]

	Plugin Specific Event Definitions
	Timer Events
	timer.[name] Timer Events

	Animation Events
	gre.animate.complete.[name]
	gre.animate.stop.[name]

	Gesture Events
	gre.gesture.up
	gre.gesture.down
	gre.gesture.left
	gre.gesture.right

	Screen Display Capture (ScreenDump) Events
	gre.screendump.complete
	gre.screendump.failed

	Screen Event Capture/Playback Events
	gre.capture.started
	gre.capture.stopped
	gre.playback.started
	gre.playback.complete
	gre.playback.stopped

	Media Events
	gre.media.exit
	gre.media.timeupdate
	gre.media.durationupdate
	gre.media.statechange
	gre.media.complete
	gre.media.error

	Logger Events
	gre.%perf_prefix%.start
	gre.%perf_prefix%.stop
	gre.%perf_prefix%.set.options

	Appendix E. Standard Action Definitions
	Built-in Action Definitions
	gra.screen
	gra.screen.fade
	gra.screen.hold
	gra.screen.release
	gra.sendevent
	gra.datachange
	gra.screen.focus.set
	gra.screen.focus.next
	gra.screen.focus.prev
	gra.screen.focus.direction
	gra.table.scroll
	gra.table.resize
	gra.table.navigate
	gra.scroll.stop
	gra.log
	gra.resource.dump_def
	gra.playback
	gra.capture

	Plugin Action Definitions
	gra.lua
	gra.ccallback
	gra.animate
	gra.animate.stop
	gra.audio
	gra.greio
	gra.perf_state
	gra.redirect
	gra.screen.path
	gra.screen.scale
	gra.screen.glswitch
	gra.screen.glrotate
	gra.screen.glflip
	gra.screen.gldoors
	gra.screen.gltip
	gra.screen.glcube
	gra.screen.rotate
	gra.screendump
	gra.system
	gra.timer
	gra.timer.stop
	Media Actions
	gra.media.connect
	gra.media.disconnect
	gra.media.new.audio
	gra.media.new.video
	gra.media.volume
	gra.media.seek
	gra.media.stop
	gra.media.resume
	gra.media.pause

	Appendix F. Standard Render Extension Definitions
	Common Render Extension Options
	Canvas
	Circle and Arc
	External Buffer
	Fill
	Image
	Polygon
	Rectangle
	Text
	3D Model

	Appendix G. Storyboard Engine Public API
	gr_application_create_args
	gr_application_create
	gr_application_free
	gr_application_run
	gr_application_quit
	gr_application_debug
	gr_app_log
	gr_application_set_data
	gr_application_set_data_variable
	gr_application_get_data
	gr_application_get_data_variable
	gr_application_add_event_listener
	gr_application_rem_event_listener
	gr_application_send_event
	gr_context_get_application
	gr_context_max_fqn
	gr_context_get_row
	gr_context_get_column
	gr_context_get_control
	gr_context_get_group
	gr_context_get_layer
	gr_context_get_screen
	gr_context_get_fqn
	gr_context_get_event_name
	gr_context_get_event_data

	Part I. Storyboard Tutorials
	Chapter 33. Importing Sample Projects from Crank's Public SVN
	Chapter 34. Working with Multiple Application Design Files
	Creating a Project
	Resolving Conflicts

	Chapter 35. Creating a 3D Model Application
	New Project
	3D Model Control
	Resize Model

	Part II. Storyboard Demo Images
	Chapter 36. NXP
	i.MX 6QuadPlus
	Demo Details

	i.MX 6UltraLite
	Demo Details

	i.MX 6ULL
	Demo Details

	i.MX 6DualLite
	Demo Details

	i.MX 6SoloX
	Demo Details

	Toradex i.MX 7Dual SoM
	Demo Details
	Flashing the Image
	U-Boot

	Copying Image to an SD Card - Linux
	Copying Image to an SD Card - Windows
	Running the Image
	Turn On or Off the Console

	Chapter 37. STMicroelectronics
	STM32F429
	Demo Details

	STM32F439
	Demo Details

	STM32 F7
	Demo Details

	Required Hardware and Software
	Package Contents
	STM32 ST-LINK Utility
	Running the Demo
	Importing the Demo into Storyboard Designer
	Creating Your Own Demo

	Chapter 38. Microchip
	SAMA5D2
	Demo Details

	SAMA5D2 with 7 inch Display
	Demo Details

	Copying Image to an SD Card - Linux
	Creating an Image - Windows
	Running the Image

	Chapter 39. Renesas
	RZ/A1
	Demo Details
	Flashing the Image

	Chapter 40. Linux
	TI AM355 Starter Kit
	Step 1: Importing A Storyboard Sample
	Step 2: Exporting A Storyboard Application
	Step 3: Selecting The Storyboard Embedded Engine
	Step 4: Configuring The Target Platform
	Step 5: Running The Storyboard Application

	Raspberry Pi

	Part III. Release Notes
	Chapter 41. Release Notes 6.2
	New Features and Functionality
	Designer
	Engine
	Lua Scripting
	Behavioural Changes and Deprecations
	Known Issues

	Chapter 42. Release Notes 6.1
	New Features and Functionality
	Storyboard Designer
	Storyboard Engine
	Lua Scripting
	Behavioural Changes and Deprecations

	Chapter 43. Release Notes 6.0
	New Features and Functionality
	General
	Storyboard Designer
	Storyboard Engine
	Behavioural Changes and Deprecations

	Part IV. Licensing
	Chapter 44. Storyboard Licensing

