
Crank Storyboard Suite

Crank Storyboard Suite
Copyright © 2016 All Rights Reserved. For more information email info@cranksoftware.com or visit http://
www.cranksoftware.com

iii

Table of Contents
I. Crank Storyboard Suite .. 1

1. Storyboard Suite Overview ... 8
Introduction ... 8
Compatibility with Previous Versions .. 8
Storyboard Architecture ... 9

Graphical Composition Elements ... 9
Events and Actions ... 12
Variables, Dynamic Content and the Data Manager ... 15
Maintaining State and Reacting to Changes ... 20
Execution Pipeline .. 21
Execution Environment .. 24
Animations .. 24
Scripting .. 26
External Communication (Storyboard IO) .. 26
Performance Considerations .. 27

2. Storyboard Designer .. 28
Introduction ... 28
Designer Environment ... 28

Storyboard Designer Workbench ... 28
Anatomy of a Storyboard Designer Project .. 29
Storyboard Simulator ... 31

Storyboard Designer Editor ... 31
Editing Content .. 31
Editor Toolbar .. 32
Direct Editing .. 33

Storyboard Designer Views .. 33
Actions View ... 33
Application Model View .. 35
Animation Timeline View .. 37
Images View .. 42
Layers View .. 44
Navigator View .. 45
Outline View ... 46
Problems View ... 47
Properties View .. 47
Templates View .. 49
Variables View ... 49
Notes View .. 52

Creating a Storyboard Designer Project ... 53
New Storyboard Application ... 53
Photoshop PSD File Import .. 55
How Photoshop Content Will Import to Storyboard ... 58
Storyboard Embedded Engine Import ... 60
Existing Project Import .. 61

Storyboard Designer Development ... 62
Simulating and Exporting an Application .. 62
Translation and Internationalization .. 69
OpenGL ES 2.0 Custom Shader, 3D Model and Compressed Texture Support 73
Working With Templates ... 76
Working with Multiple Application Design Files .. 77
Circles and Arcs ... 81

Crank Storyboard Suite

iv

9-Patch .. 82
Groups .. 83
Scrolling Layers ... 84
Target Configuration ... 85
User Defined Actions .. 87
User Defined Render Extensions ... 87
Photoshop Re-Import Feature .. 88

Storyboard Designer Utilities .. 91
Design Notes ... 91
GoTo Dialog .. 93
Storyboard Search Dialog ... 94
Resize Storyboard Application .. 95
Resource Clean Up Wizard ... 98
Consolidate Images Wizard .. 98
Trim Images Wizard ... 99
Split Images Wizard .. 100
Merge Control Images ... 101

Collaboration and Team Development ... 101
Revision Control System Integration ... 102
Comparing and Merging Model Files .. 102
Comparing and Merging Projects ... 104

3. Storyboard Engine ... 105
Introduction .. 105
Target Configuration .. 105

Application Files ... 105
Setting up Storyboard Engine .. 106
Running Storyboard Engine .. 106
Command line Options ... 106
Plugins .. 111

Custom Shader Support .. 118
Font Environment Variable ... 119
System Specific Requirements ... 119

Linux FBDEV x86, armle ... 119
Microsoft WinCE, Compact7 win32, armle .. 120
Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle 120

4. Storyboard Media .. 121
Introduction .. 121
Media Actions .. 121

gra.media.new.audio .. 121
gra.media.new.video .. 121
gra.media.volume .. 122
gra.media.seek .. 122
gra.media.stop ... 122
gra.media.playpause ... 123

Media Events ... 123
gre.media.exit ... 123
gre.media.timeupdate ... 123
gre.media.statechange ... 123
gre.media.complete .. 124
gre.media.error .. 124

Media backends .. 124
gstreamer-backend ... 124
Gstreamer pipeline .. 125
External render extensions .. 125

Crank Storyboard Suite

v

5. Event Definitions ... 126
Standard Event Definitions ... 126

System Events .. 126
Pointer Events .. 126
Keyboard Events ... 131
Screen Manager Events ... 132
Focus Events .. 133
Table Events .. 133
Table Scroll Events ... 134
Layer Scroll Events ... 135
Mobile Events (Android and iOS) .. 136
Android Events ... 136
Windows Embedded Compact 2013 (WEC2013) Events 137

Plugin Specific Event Definitions ... 137
gre.gesture.up .. 138
gre.gesture.down .. 138
gre.gesture.left .. 138
gre.gesture.right .. 138
gre.screendump.complete .. 138
timer.[name] Timer Events ... 138
gre.animate.complete.[name] Animation Events 138
gre.rendermgr.error .. 139

6. Action Definitions ... 140
Built-in Action Definitions .. 140

gra.screen ... 140
gra.screen.fade .. 140
gra.screen.hold .. 140
gra.screen.release .. 140
gra.sendevent .. 140
gra.datachange .. 141
gra.screen.focus.set .. 141
gra.screen.focus.next .. 141
gra.screen.focus.prev .. 141
gra.screen.focus.direction .. 141
gra.table.scroll .. 142
gra.table.resize .. 142
gra.table.navigate .. 143
gra.log ... 143
gra.resource.dump_def .. 143
gra.playback .. 144

Plugin Action Definitions ... 144
gra.lua ... 144
gra.animate .. 145
gra.animate.stop .. 145
gra.audio .. 145
gra.greio .. 145
gra.perf_state .. 146
gra.redirect ... 146
gra.screen.path .. 146
gra.screen.scale ... 147
gra.screen.glswitch .. 147
gra.screen.glrotate .. 148
gra.screen.glflip ... 148
gra.screen.gldoors .. 149

Crank Storyboard Suite

vi

gra.screen.gltip .. 149
gra.screen.glcube ... 150
gra.screendump ... 151
gra.timer .. 151

7. Render Extension Definitions ... 152
Common Render Extension Options ... 152

Render Extension Alignment ... 152
Fill ... 153

Fill Render Extension Options ... 153
Polygon ... 154

Polygon Render Extension Options ... 154
Rectangle ... 154

Rectangle Render Extension Options .. 154
Image .. 154

Image Render Extension Options ... 154
Image Alignment .. 155

Text .. 155
Text Render Extension Options ... 156

External ... 156
External Render Extension Options .. 156

3D Model .. 156
3D Model Render Extension Options .. 157

8. Scripting with Lua ... 159
Lua Function Parameters .. 159
Passing Extra Parameters to Functions .. 160
Storyboard Lua Integration ... 160
Lua Execution Environment .. 161
Asynchronous Lua Support ... 161
Lua Debugger ... 162

Introduction .. 162
Configuration ... 162
Debugging ... 164

Storyboard Lua API ... 165
gre.SCRIPT_ROOT ... 165
gre.set_data .. 166
gre.get_data .. 166
gre.set_value .. 167
gre.get_value .. 168
gre.send_event .. 168
gre.send_event_target ... 169
gre.send_event_data ... 170
gre.receive_event ... 171
gre.greio_disconnect .. 172
gre.touch .. 172
gre.key_up ... 173
gre.key_down ... 173
gre.key_repeat .. 173
gre.redraw .. 174
gre.quit .. 174
gre.move_layer ... 175
gre.move_control ... 175
gre.clone_control ... 176
gre.delete_control .. 176
gre.get_control_attrs ... 177

Crank Storyboard Suite

vii

gre.set_control_attrs ... 178
gre.get_layer_attrs ... 179
gre.set_layer_attrs .. 179
gre.set_layer_attrs_global .. 180
gre.get_table_attrs ... 181
gre.set_table_attrs .. 182
gre.get_table_cell_attrs ... 182
gre.get_string_size ... 183
gre.poly_string .. 184
gre.resolve_data_key .. 185
gre.load_resource .. 185
gre.load_image .. 186
gre.dump_resource ... 187
gre.walk_pool ... 187
gre.timer_set_timeout ... 188
gre.timer_set_interval ... 188
gre.timer_clear_timeout .. 189
gre.timer_clear_interval .. 190
gre.thread_create ... 191
gre.vfs_open ... 192
gre.mstime ... 192
gre.env .. 193
gre.animation_create .. 194
gre.animation_add_step .. 195
gre.animation_destroy .. 195
gre.animation_trigger ... 196

Storyboard Lua DOM Module ... 197
gredom.get_application ... 197
gredom.get_object ... 197
DOMOBJECT:get_name .. 198
DOMOBJECT:get_type .. 198
DOMOBJECT:get_parents .. 198
DOMOBJECT:get_children ... 198
DOMOBJECT:get_variables .. 199
Lua DOM Samples .. 199

Storyboard Lua Android Integration ... 200
Storyboard Lua Android Integration ... 200

9. Storyboard IO ... 206
Connecting to a Storyboard Application .. 206
Sending Events to a Storyboard Application ... 207
Setting Application Data ... 208
Receiving Events from a Storyboard Application .. 209
Storyboard IO Utilities ... 210

iogen ... 210
iorcv ... 211

Storyboard IO API .. 211
gre_io_add_mdata ... 211
gre_io_close ... 212
gre_io_free_buffer ... 212
gre_io_grow_buffer ... 213
gre_io_open ... 213
gre_io_receive .. 214
gre_io_send .. 214
gre_io_send_mdata .. 215

Crank Storyboard Suite

viii

gre_io_serialize ... 215
gre_io_size_buffer ... 216
gre_io_unserialize .. 216
gre_io_zero_buffer .. 217

10. Storyboard 3D Support ... 218
3D Rendering Fundamentals ... 218
The Scene Graph and Transformations .. 218
Material Support ... 219
Animation Support .. 220
Discussion on mapping FBX Animation data into meaningful structures 220
Support for Animation Takes .. 221

11. Optimizing Your Storyboard Application ... 222
Choosing the Right Image Format(s) .. 222
Frames Per Second .. 222
Scaling Images ... 222
Reducing Output Verbosity ... 222
Adjusting Engine Rendering Options .. 222
Memory ... 223
Measuring Performance .. 223

12. Storyboard Software Updates ... 225
Automatic Updates .. 225

II. Storyboard Design Tutorials .. 226
13. Creating a Storyboard Project from a Sample .. 228

Creating a New Application using the Storyboard Samples 228
Import ... 228
Import Sample ... 228
New Sample Project .. 229

14. Working with Multiple Application Design Files ... 230
Creating a Project ... 230
Resolving Conflicts ... 234

15. Creating a 3D Model Application ... 235
16. Creating a Multi-Touch Application .. 241
17. Adding Extra Libraries for Android ... 244
18. Adding Extra Libraries for iOS .. 246
19. Crank Public SVN ... 247
20. Exporting a Storyboard Project ... 255
21. Importing a Storyboard Project ... 257

III. Storyboard Target Tutorials ... 260
22. Linux ... 262

TI AM355 Starter Kit .. 262
Step 1: Importing A Storyboard Sample .. 262
Step 2: Exporting A Storyboard Application ... 264
Step 3: Selecting The Storyboard Embedded Engine 266
Step 4: Configuring The Target Platform ... 267
Step 5: Running The Storyboard Application .. 267

IV. Release Notes ... 268
23. Release Notes 4.0 .. 270

Introduction .. 270
Storyboard Designer .. 270

Changes ... 270
Known Issues ... 270

Storyboard Engine ... 271
Changes ... 271
Known Issues ... 272

Crank Storyboard Suite

ix

24. Release Notes 4.1 .. 273
Introduction .. 273
Storyboard Designer .. 273

Changes ... 273
Known Issues ... 274

Storyboard Engine ... 274
Changes ... 274
Known Issues ... 274

25. Release Notes 4.2 .. 276
Introduction .. 276
Storyboard Designer .. 276

Changes ... 276
Known Issues ... 277

Storyboard Embedded Engine .. 277
Changes ... 277
Known Issues ... 278

26. Release Notes 4.2.1 .. 279
Introduction .. 279
Storyboard Designer .. 279

Changes ... 279
Known Issues ... 279

Storyboard Embedded Engine .. 280
Changes ... 280
Known Issues ... 280

V. Licensing ... 281
27. END-USER LICENSE AGREEMENT .. 283
28. Crank Software Third Party License Guide ... 293

Introduction .. 293
Storyboard Designer .. 293

Lightweight Java Game Library ... 293
Storyboard Engine ... 294

Lua ... 294
SOIL ... 294
Option Parsing .. 295
XML Parsing .. 295
Imagination OpenGL libraries ... 296
FreeType library ... 296
Scanline edge-flag algorithm for antialiasing .. 298
General IFF format .. 299
GNU LESSER GENERAL PUBLIC LICENSE .. 299

Storyboard Engine Platform Specific Dependencies ... 301
All Simple Direct Media Layer (SDL) renderers ... 302
All Simple Direct Media Layer (SDL), OpenGL ES 2.0, and Fujitsu Jade
renderers. ... 302

Fonts ... 302
Bitstream Vera .. 302
Bitstream Deja Vu ... 304
Liberation .. 305
Roboto .. 307
Lato .. 307

x

List of Tables
3.1. Options ... 106
3.2. Action Manager Options .. 107
3.3. Data Manager Options ... 107
3.4. IO Manager Options .. 107
3.5. Model Manager Options ... 107
3.6. Render Manager Options: Windows, win32, OpenGL ES 2.0, x86 107
3.7. Render Manager Options: Linux, sdl, x86 .. 107
3.8. Render Manager Options: Linux, fbdev, x86, armle ... 108
3.9. Render Manager Options: Linux, directfb, x86, armle .. 108
3.10. Render Manager Options: Linux, Windows CE, Windows Compact 7, Mac OSX, Neutrino
6.5, OpenGL ES 2.0, armle (Beagleboard) ... 108
3.11. Render Manager Options: QNX Neutrino 6.5, Linux, Fujitsu Jade, armle 110
3.12. Render Manager Options: WinCE 6.0, Windows Compact 7, win32, armle 110
3.13. Resource Manager Options ... 110
3.14. Screen Manager Options ... 110
3.15. 3D model rendering: libgre-plugin-model3d.so .. 111
3.16. Capture/Playback: libgre-plugin-capture-playback.so .. 111
3.17. Gesture: libgre-plugin-gesture.so .. 111
3.18. Linux Input Support: libgre-plugin-dev-input.so .. 112
3.19. Lua Scripting: libgre-plugin-lua.so .. 112
3.20. Linux Multi-touch Protocol: libgre-plugin-mtdev.so ... 112
3.21. Linux Touchscreen Support: libgre-plugin-tslib.so ... 113
3.22. Logger: libgre-plugin-logger.so .. 113
3.23. QNX input support: libgre-plugin-gfi-input.so ... 115
3.24. Storyboard IO: libgre-plugin-greio.so .. 116

Part I. Crank Storyboard Suite

2

Table of Contents
1. Storyboard Suite Overview ... 8

Introduction ... 8
Compatibility with Previous Versions .. 8
Storyboard Architecture ... 9

Graphical Composition Elements ... 9
Events and Actions ... 12
Variables, Dynamic Content and the Data Manager ... 15
Maintaining State and Reacting to Changes ... 20
Execution Pipeline .. 21
Execution Environment .. 24
Animations .. 24
Scripting .. 26
External Communication (Storyboard IO) .. 26
Performance Considerations .. 27

2. Storyboard Designer .. 28
Introduction ... 28
Designer Environment ... 28

Storyboard Designer Workbench ... 28
Anatomy of a Storyboard Designer Project .. 29
Storyboard Simulator ... 31

Storyboard Designer Editor .. 31
Editing Content .. 31
Editor Toolbar .. 32
Direct Editing .. 33

Storyboard Designer Views .. 33
Actions View ... 33
Application Model View .. 35
Animation Timeline View .. 37
Images View .. 42
Layers View .. 44
Navigator View .. 45
Outline View ... 46
Problems View ... 47
Properties View .. 47
Templates View .. 49
Variables View ... 49
Notes View .. 52

Creating a Storyboard Designer Project .. 53
New Storyboard Application ... 53
Photoshop PSD File Import .. 55
How Photoshop Content Will Import to Storyboard ... 58
Storyboard Embedded Engine Import ... 60
Existing Project Import .. 61

Storyboard Designer Development ... 62
Simulating and Exporting an Application .. 62
Translation and Internationalization .. 69
OpenGL ES 2.0 Custom Shader, 3D Model and Compressed Texture Support 73
Working With Templates ... 76
Working with Multiple Application Design Files .. 77
Circles and Arcs ... 81
9-Patch .. 82

Crank Storyboard Suite

3

Groups .. 83
Scrolling Layers ... 84
Target Configuration ... 85
User Defined Actions .. 87
User Defined Render Extensions ... 87
Photoshop Re-Import Feature .. 88

Storyboard Designer Utilities .. 91
Design Notes ... 91
GoTo Dialog .. 93
Storyboard Search Dialog ... 94
Resize Storyboard Application .. 95
Resource Clean Up Wizard ... 98
Consolidate Images Wizard .. 98
Trim Images Wizard ... 99
Split Images Wizard .. 100
Merge Control Images ... 101

Collaboration and Team Development .. 101
Revision Control System Integration ... 102
Comparing and Merging Model Files .. 102
Comparing and Merging Projects ... 104

3. Storyboard Engine ... 105
Introduction .. 105
Target Configuration .. 105

Application Files ... 105
Setting up Storyboard Engine .. 106
Running Storyboard Engine .. 106
Command line Options ... 106
Plugins .. 111

Custom Shader Support .. 118
Font Environment Variable ... 119
System Specific Requirements ... 119

Linux FBDEV x86, armle ... 119
Microsoft WinCE, Compact7 win32, armle .. 120
Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle 120

4. Storyboard Media .. 121
Introduction .. 121
Media Actions .. 121

gra.media.new.audio .. 121
gra.media.new.video .. 121
gra.media.volume .. 122
gra.media.seek .. 122
gra.media.stop ... 122
gra.media.playpause ... 123

Media Events ... 123
gre.media.exit ... 123
gre.media.timeupdate ... 123
gre.media.statechange ... 123
gre.media.complete .. 124
gre.media.error .. 124

Media backends .. 124
gstreamer-backend ... 124
Gstreamer pipeline .. 125
External render extensions .. 125

5. Event Definitions ... 126

Crank Storyboard Suite

4

Standard Event Definitions ... 126
System Events .. 126
Pointer Events .. 126
Keyboard Events ... 131
Screen Manager Events ... 132
Focus Events .. 133
Table Events .. 133
Table Scroll Events ... 134
Layer Scroll Events ... 135
Mobile Events (Android and iOS) .. 136
Android Events ... 136
Windows Embedded Compact 2013 (WEC2013) Events ... 137

Plugin Specific Event Definitions ... 137
gre.gesture.up .. 138
gre.gesture.down .. 138
gre.gesture.left .. 138
gre.gesture.right .. 138
gre.screendump.complete .. 138
timer.[name] Timer Events ... 138
gre.animate.complete.[name] Animation Events 138
gre.rendermgr.error .. 139

6. Action Definitions ... 140
Built-in Action Definitions .. 140

gra.screen .. 140
gra.screen.fade .. 140
gra.screen.hold .. 140
gra.screen.release .. 140
gra.sendevent .. 140
gra.datachange .. 141
gra.screen.focus.set .. 141
gra.screen.focus.next .. 141
gra.screen.focus.prev .. 141
gra.screen.focus.direction .. 141
gra.table.scroll .. 142
gra.table.resize .. 142
gra.table.navigate .. 143
gra.log ... 143
gra.resource.dump_def ... 143
gra.playback .. 144

Plugin Action Definitions ... 144
gra.lua ... 144
gra.animate .. 145
gra.animate.stop .. 145
gra.audio .. 145
gra.greio .. 145
gra.perf_state .. 146
gra.redirect ... 146
gra.screen.path .. 146
gra.screen.scale ... 147
gra.screen.glswitch .. 147
gra.screen.glrotate .. 148
gra.screen.glflip .. 148
gra.screen.gldoors .. 149
gra.screen.gltip .. 149

Crank Storyboard Suite

5

gra.screen.glcube ... 150
gra.screendump ... 151
gra.timer .. 151

7. Render Extension Definitions .. 152
Common Render Extension Options ... 152

Render Extension Alignment ... 152
Fill ... 153

Fill Render Extension Options ... 153
Polygon ... 154

Polygon Render Extension Options .. 154
Rectangle ... 154

Rectangle Render Extension Options .. 154
Image .. 154

Image Render Extension Options ... 154
Image Alignment .. 155

Text .. 155
Text Render Extension Options ... 156

External ... 156
External Render Extension Options .. 156

3D Model .. 156
3D Model Render Extension Options .. 157

8. Scripting with Lua ... 159
Lua Function Parameters .. 159
Passing Extra Parameters to Functions .. 160
Storyboard Lua Integration ... 160
Lua Execution Environment .. 161
Asynchronous Lua Support ... 161
Lua Debugger ... 162

Introduction .. 162
Configuration ... 162
Debugging ... 164

Storyboard Lua API ... 165
gre.SCRIPT_ROOT ... 165
gre.set_data .. 166
gre.get_data .. 166
gre.set_value .. 167
gre.get_value .. 168
gre.send_event .. 168
gre.send_event_target ... 169
gre.send_event_data ... 170
gre.receive_event ... 171
gre.greio_disconnect .. 172
gre.touch .. 172
gre.key_up ... 173
gre.key_down ... 173
gre.key_repeat .. 173
gre.redraw .. 174
gre.quit .. 174
gre.move_layer ... 175
gre.move_control ... 175
gre.clone_control ... 176
gre.delete_control .. 176
gre.get_control_attrs ... 177
gre.set_control_attrs ... 178

Crank Storyboard Suite

6

gre.get_layer_attrs ... 179
gre.set_layer_attrs .. 179
gre.set_layer_attrs_global .. 180
gre.get_table_attrs ... 181
gre.set_table_attrs .. 182
gre.get_table_cell_attrs ... 182
gre.get_string_size ... 183
gre.poly_string .. 184
gre.resolve_data_key .. 185
gre.load_resource .. 185
gre.load_image .. 186
gre.dump_resource ... 187
gre.walk_pool ... 187
gre.timer_set_timeout ... 188
gre.timer_set_interval ... 188
gre.timer_clear_timeout .. 189
gre.timer_clear_interval .. 190
gre.thread_create ... 191
gre.vfs_open ... 192
gre.mstime ... 192
gre.env .. 193
gre.animation_create .. 194
gre.animation_add_step .. 195
gre.animation_destroy .. 195
gre.animation_trigger ... 196

Storyboard Lua DOM Module ... 197
gredom.get_application ... 197
gredom.get_object ... 197
DOMOBJECT:get_name .. 198
DOMOBJECT:get_type .. 198
DOMOBJECT:get_parents .. 198
DOMOBJECT:get_children ... 198
DOMOBJECT:get_variables .. 199
Lua DOM Samples .. 199

Storyboard Lua Android Integration ... 200
Storyboard Lua Android Integration ... 200

9. Storyboard IO ... 206
Connecting to a Storyboard Application .. 206
Sending Events to a Storyboard Application ... 207
Setting Application Data .. 208
Receiving Events from a Storyboard Application .. 209
Storyboard IO Utilities ... 210

iogen ... 210
iorcv ... 211

Storyboard IO API .. 211
gre_io_add_mdata ... 211
gre_io_close ... 212
gre_io_free_buffer ... 212
gre_io_grow_buffer ... 213
gre_io_open ... 213
gre_io_receive .. 214
gre_io_send .. 214
gre_io_send_mdata .. 215
gre_io_serialize ... 215

Crank Storyboard Suite

7

gre_io_size_buffer ... 216
gre_io_unserialize .. 216
gre_io_zero_buffer .. 217

10. Storyboard 3D Support ... 218
3D Rendering Fundamentals ... 218
The Scene Graph and Transformations .. 218
Material Support ... 219
Animation Support .. 220
Discussion on mapping FBX Animation data into meaningful structures 220
Support for Animation Takes .. 221

11. Optimizing Your Storyboard Application ... 222
Choosing the Right Image Format(s) .. 222
Frames Per Second .. 222
Scaling Images ... 222
Reducing Output Verbosity ... 222
Adjusting Engine Rendering Options .. 222
Memory ... 223
Measuring Performance .. 223

12. Storyboard Software Updates ... 225
Automatic Updates .. 225

8

Chapter 1. Storyboard Suite Overview

Introduction
Crank Storyboard Suite is composed of two components, Storyboard Designer and Storyboard Engine, that
work together to provide a complete graphical user interface development and deployment environment
targeted specifically at the needs of embedded user interface developers.

Storyboard Designer provides a desktop-based (Windows/Mac/Linux) graphical development
environment that provides a drag and drop approach to building the user interface using elements familiar
to graphic designers, Photoshop PSD content, PNG and JPG image files, and standard TrueType fonts.

When a design is ready for testing, it can be simulated in the desktop environment or easily (really, really
easily!) deployed to an embedded target device. Storyboard Designer does not produce code, but produces
a data model that is independent of the operating system or processor that will execute the UI. This data
model is interpreted by Storyboard Engine.

Storyboard Engine is an embedded target specific rendering engine that is highly portable and optimized
for a specific combination of CPU, operating system, and rendering technology.

These two technologies, Storyboard Designer and Storyboard Engine, provide a highly efficient way of
transforming user interface prototypes created by graphic designers, using tools such as Photoshop, into
working applications ready for deployment.

Compatibility with Previous Versions
Workspaces that were created with older versions of Storyboard Designer can be used directly with newer
versions of Storyboard Designer but may require additional import steps to be followed to update to interim
versions. Storyboard 4 will import project content from Storyboard 1.x, 2.x and 3.x projects.

Once a model file(*.gde) has been saved with a newer version of Storyboard Designer, the model file
will be automatically converted to that version of Storyboard Designer, making it incompatible with older

Storyboard Suite Overview

9

versions of Storyboard Designer. Users migrating to new versions of Storyboard Suite should take care to
save and archive a snapshot of their project if they plan on upading it with an older Storyboard Desginer
environment.

If a new model file is required to be used in an older Storyboard Designer environment, the best approach
to 'back migrate' is to export the application to a Storyboard Engine deployent from the newer version of
Designer and then in the older version of Designer, use the import Storyboard Embedded Engine option
to create a new Designer project. This export/import will cause certain items to be lost, such as notes and
unused layers, and incompatible features will not be able to be transferred to the old model.

Storyboard Engine deployment files are also versioned with each release as the file structure changes, but
Storyboard Designer maintains import support support for all versions of the engine.

Storyboard Architecture
Storyboard is designed to be used to develop and run fullscreen application user interfaces. Developing
a Storyboard application is straightforward and simple, but relies on understanding a few concepts and
terms and how they relate to one another within the Storyboard framework.

Graphical Composition Elements
A Storyboard application is composed of a hierarchy of model elements: Screens, layers, groups and
controls.

Storyboard Suite Overview

10

An application can be composed of multiple screens, however only a single screen is ever visible at one
time.

Each screen is composed of one or more layers. The screen controls how multiple layers have their content
composited together to form final display output. Where possible, layers may be mapped directly to layers
in the graphic hardware. Multiple screens can reference the same layer, effectively sharing the visual
content of the layer and creating multiple layer instances. All layer instances share the same visual content,
but the position and visibility of the layer is specific to the screen context where it is being used. When a
screen is painted, the z-order of the layer instances is used to determine which areas of a layer are visible
to the user.

Layers contain controls and groups. Controls are the containers for renderable content such as images and
text. Groups provide organizational structure that allow controls to be associated together in a common
named container. A control is sized and positioned relative to its parent, layer or group, and contains zero
or more render extensions that describe the type of rendering to occur when the control is damaged and
redrawn. Controls are the only model elements in a Storyboard application that track input focus.

Each of the screen, layer, groups and control model elements are named items. Screen and layer names
must not collide with one another and must be uniquely named. Control and group names must be unique
within the scope of their parent container.

Screens

A screen represents the user's view at any given moment. A screen is composed of one or more layers.
These layers are composited to the screen in a z-order (back to front) in order to combine them to form
the desired output. Each screen has a name and by using screen transition actions a user can traverse the
user interface's many screens.

Here is an example of a screen containing three layers containing controls with images and text that
combine to form the final screen:

Storyboard Suite Overview

11

Layers

Layers are the containers for controls and groups. A screen in the user interface is generally composed
of multiple layers. A single layer can be reused and shared across multiple screens to allow common
content to be displayed and manipulated. If the control or group content of a layer is changed, that change
will propagate to all screens where that layer is being displayed. Certain layer attributes, such as a layer's
position or its visibility are maintained on a per-screen instance basis. This allows designers to hide, show
and move content on a screen by screen basis without affecting other screens where the layer may be used.

Layers can receive events and respond with actions as well as contain variables that can be referenced by
other model elements. These events and variables are common to all places the layer is used.

Groups

Groups are containers for controls. Groups provide a mechanism to organize content and to place common
UI elements together along with variables that may be shared among the controls. Groups have a position
within a layer and a size that is dictated by the groups children. All controls within the group are laid out
relative to the group's origin.

Groups can receive events and respond with actions as well as contain variables that can be referenced by
other model elements, in particular the child controls of the group.

Controls

A user interface is made up of many controls. A control is a rectangular area of the screen that can render
content and react to events. Each control can be made up of many render extensions and react to any
number of events. Controls can be shown or hidden and active/inactive as the system requires. A special
type of control, called a table, is available to create row/column-based layout of information. Each column
in a table can have a distinct template for rendering. This allows for efficient and easy creation of list-
style information.

Storyboard Suite Overview

12

Render Extensions

A render extension is the most basic piece of the user interface. It is responsible for rendering a specific
type of content. Render extensions must be bound to a specific control and are not permitted to draw
beyond the boundaries of the control to which they are bound. It is possible to include multiple render
extensions on a control, and the order in which they are declared in the deployment bundle will define the
order in which they perform their rendering.

Some render extensions included with the standard Storyboard release include:

• Render an image (PNG, GIF, JPEG)

• Render a text string

• Render a filled polygon, arc, circl or rectangle

• Render a 3D model (OBJ, GLES)

When designing a user interface, it is often possible to achieve the same look and feel by using multiple
render extensions on a control or by using multiple controls with overlapping behaviour. The general rule
of thumb is that multiple render extensions on a single control should be used when there is a common
event for action binding that would occur for all of the visual components being displayed.

Events and Actions

Events

Events are the basic communication mechanism for triggering activity and passing data in a Storyboard
application.

Events contain a name and a binary data payload. The content of the data payload is described using
a format string that allows clients to generically decode the data payload. For example, the Lua action
performs this decoding to allow access to the event data using string keys.

Events may be received from multiple input sources, but are processed serially by the Storyboard Engine.
Clients can quickly and easily define their own custom events to enhance and drive their application, and
to use these in conjunction with the standard event definitions provided by Storyboard.

A complete list of standard events can be found in the events definition section of this document.

Storyboard Suite Overview

13

Event Naming Conventions

New events can be readily defined and are not required to contain a data payload. In this case their format
string and data payload will be empty values. When creating new events, it is appropriate to namespace
the event definitions so that the names of events do not collide. For example, the Storyboard framework
reserves the name prefix of gre. for user interface events, and the timer functions all generate events
that are prefixed with timer.

The use of events is closely coupled with the declaration and operation of actions. An action can only
be invoked when an event matching the action definition is received. This results in a common design
pattern where an action will perform sophisticated logic in an external script or program and then signal
a completion action to run once the script work is complete.

Event >Action (script) >Work >Trigger Event >Action (completion)

Event Format String

The format string on the event is used to assist with decoding event data. This decoding is used in the
action bindings, to allow a minimal amount of additional logic to be placed into the event matching code,
and also by certain advanced actions, such as Lua scripts, that can symbolically access the event data in
the context of the script.

The format string provides a description of how to interpret the memory block (typically a data structure)
that is associated with the event as its data payload. The format string is relatively straightforward to
create and uses blocks that are formatted as [numbytes][signed/unsigned][numelements]
[][name]. For the standard C data types the number formatting would look like:

1s0 --> Special null terminated string
1s1|1u1 --> 1 byte integer (int8_t uint8_t)
2s1|2u1 --> 2 byte integer (int16_t uint16_t)
4s1|4u1 --> 4 byte integer (int32_t uint32_t)
4f1 --> 4 byte floating point (IEEE754 float)
8s1|8u1 --> 8 byte integer (int64_t uint64_t)

So, if you were transmitting a structure such as:

struct {
 int32_t a;
 uint16_t b;
};

Which is assumed to have a bytewise memory layout of:

[a|a|a|a|b|b]

You would use a format string of 4s1 a 2u1 b to describe the event.

The event data field descriptions a and b are optional. They are used to give the data symbolic
representation for clients and do not have to be named to match the C structure field values. The
descriptions are used by clients of the event data to symbolically access the event data. The Lua script
plugin, for example, will use the symbolic name information as keys to a table that stores the event data
content, appropriately decoded based on the format string definition.

Storyboard Suite Overview

14

The format string provided describes the memory layout of the data associated with the event.
Consequently it is important that the format string compensate for any alignment or compiler padding
provided by inserting appropriate additional format entries to skip over unused bytes. This may require
slight adjustments to the format string based on the CPU architecture or compiler settings regarding C
structure alignment.

Actions

Events trigger actions. Actions perform tasks; manipulate data, interact with the system, log messages,
generate more events, etc.

Actions can be associated with any model object, but they are frequently associated with controls. When an
event is received it is matched first against the actions associated with the currently focused control. After
the control's actions, the processing passes to the actions associated with the visible layers on the screen,
followed by the screen and application actions. This cascade of action handling provides an opportunity
for the action execution to take place in the model context (application, screen, layer, control) that is most
appropriate.

Actions are always invoked in response to an event to perform some sort of activity, and they are always
executed in the context of the main execution thread. The trigger event might be a Storyboard standard
event or a user event, and it might come from within the application, from a Lua script action, or be
generated from an external program and injected using the Storyboard IO library.

More than one action might be invoked when an event is received. In this case the order in which the actions
are declared within the design is the sequence that they will be invoked when an input event is matched.
This action ordering can be used to ensure an order of operations execution. For example, changing the
value of a data variable has to happen before executing a script that references that data variable.

The following demonstrates how the a gre.press event triggers a gra.datachange action:

For more information on the Storyboard Engine execution pipeline, refer to the Execution Pipeline section
of this document.

Actions are extensible components in the Storyboard framework and are usually implemented as plugins
to be included in the runtime environment. Plugins have the ability to hook into the Storyboard Engine

Storyboard Suite Overview

15

managers and can provide a bridge between a Storyboard operation and the embedded system outside of
the application.

A complete list of standard actions can be found in the Action Definitions section of this document.

Action Naming Conventions

Actions follow the same naming conventions as data variables, which are described in the Data Variables
section of this document, with the following addition:

The namespace gra. is reserved for Storyboard internal actions.

Variables, Dynamic Content and the Data Manager

Initially all render extension properties and action arguments contain a set of fixed, static, values that are
configured by the user as the Storyboard application is being created. Most applications however require
a number of dynamic visual elements that are populated or changed during the runtime execution. In a
Storyboard application this dynamic behaviour is provided by associating render extension properties and
action arguments to data variables.

Data variables are associated with a particular model object that represents an appropriate scope for the
use of variable. For example a control that behaves as a button may use a variable to contain the image
to display in the button state. That variable would be defined on the control and associated to the image
render extension 'Image' property. In a different scenario, an application may wish to have a uniform set
of fonts used. In this situation an application level variable would be defined to contain the name of the
font for a particular style (i.e. header) and then text render extensions would associate their 'Font' property
to that application variable.

Variables are generally created at the point of use, for example within a render extension's property panel,
by selecting the variable binding button located next to the property or argument value. Once a property
or argument has been associated with a variable, the visual display will update to indicate the referenced
variable. Similarly if a property is not required to be dynamic, then it can be decoupled from the variable
and returned to a fixed value setting.

Storyboard Suite Overview

16

All of the variables defined in a Storyboard application are maintained by the Storyboard data manager
database. As the value of a variable changes, the data manager will notify model elements that they should
update their visual displays accordingly.

The data manager stores entries as key/value pairs where the key is a fully qualified model path (string)
and the value is a set of bytes with a corresponding format string describing how the data payload should
be interpreted.

The Storyboard model is hierarchical, so the construction of a fully qualified model path is straightforward
process of joining model element name segments with a . (dot) in between them. The following list
demonstrates how the fully qualified model name is formed for a variable, varname, associated with
different contexts in the model.

varname This identifies a variable, varname, as being an application level
variable

screen_name.varname This identifies a variable, varname, as being associated with the
screen screen_name

Storyboard Suite Overview

17

layer_name.varname This identifies a variable, varname, as being associated with the
layer layer_name

screen_name.layer_name.varnameThis identifies a variable, varname, as being associated with
the layer instance layer_name associated with the screen
screen_name

Most variables are not defined as layer instance variables, but rather
as layer variables.

layer_name.control_name.varnameThis identifies a variable, varname, as being associated with
the control control_name that is located on the layer
layer_name.

Groups variables can also be addressed in this same
manner as groups are also children of layers. The variable,
layer_name.group_name.varname identifies a variable
varname within the group group_name.

layer_name.group_name.control_name.varnameThis identifies a variable, varname, as being associated with
the control control_name that is located in the group
group_name on the layer layer_name.

Note

There is some overlap in the Storyboard namespace that could lead to ambiguous resolution. To
maintain a clear name resolution, layers and screens may not have the same names and within
a container such as a layer or a group, all of the model element names must be unique. This
restriction is enforced by Storyboard Designer.

Using the fully qualified model paths can be cumbersome and impose extra maintenance effort as a project
evolves or changes. Storyboard defines several variable shortcuts that will expand their value based on the
current model context in which they are being resolved.

${app:varname} Refers to the application variable varname.

${screen:varname} Refers to the current screen's variable varname

${layer:varname} Refers to the current layer's variable varname

${group:varname} Refers to the current group's variable varname

${control:varname} Refers to the current control's variable varname

For example, assuming a Storyboard model of:

Application
 + MainScreen
 + FirstLayer
 + AGroup
 + AControl
 + SecondLayer
 + AnotherControl

where the current focus is associated with the control AControl, then a reference to a variable varname
would resolve to a fully qualified path as follows:

Storyboard Suite Overview

18

${app:varname} varname

${screen:varname} MainScreen.varname

${layer:varname} FirstLayer.varname

${group:varname} FirstLayer.AGroup.AControl.varname

${control:varname} FirstLayer.AGroup.AControl.varname

Often these variables are used within render extensions and actions to define access to a dynamic value that
will be adjusted at runtime. Alternatively, application variables can be used to provide an application-wide
setting for a particular value. For example, if all text render extensions associated their font names with
an application variable ${app:heading}, then changing the value of the heading variable would
change all the fonts in the application.

Storyboard Naming Conventions

Valid data variables and control/layer/screen names must follow the following rules:

• A valid name matches the following [a-zA-Z]+[a-zA-Z0-9_]*

• Starts with a character a-z/A-Z not a digit or special character

• Only '_' is supported as a special character, no spaces in names

• Screens and layers must be uniquely named from one another

Controls and groups must have unique names within their parent container

• Declared variables on an container model element (such as a layer or a group) cannot collide with the
name of any of the child model elements of that container (such as a control or group)

• The prefix of grd is reserved for Storyboard internal variables

• The character . (dot) is reserved as a namespace separator

Layer, Group and Control Data Variables

Layers, groups and controls can be manipulated at runtime by modifying their internal data variables.
These variables are created automatically for each layer, control and group in the model and do not have
to be created by users. These variables use the reserved grd_ variable namespace.

These variables are generally accessed using ${model_object:varname}, for example
${control:grd_x} to indicate the x position of the current control

Layer variables

The following values can be queried and changed through the normal data management channels. The
position variables are relative to the screen.

grd_x (format = 4s1) The layer instance's x position relative to the screen

grd_y (format = 4s1) The layer instance's y position relative to the screen

Storyboard Suite Overview

19

grd_xoffset (format = 4s1) The x pixel offset that will be used to determine the origin of the
layer instance

grd_yoffset (format = 4s1) The y pixel offset that will be used to determine the origin of the
layer instance

grd_width (format = 4s1) The layer's width

Note

Any change to this value affects all layers.

grd_height (format = 4s1) The layer's height

Note

Any change to this value affects all layers.

grd_alpha (format = 1u1) The layer's transparency value. The values range from 255 (opaque)
to 0 (transparent)

grd_hidden (format = 1u1) The layer's visibility. A value of 0 states that the layer and all of
its controls are visible and a value of 1 hides the layer and all of
its controls

Group variables

The following values can be queried and changed through the normal data management channels.

grd_x (format = 4s1) The group's x position relative to its layer

grd_y (format = 4s1) The group's y position relative to its layer

grd_hidden (format = lu1) The group's visibility. A value of 0 indicates that the control is
visible and 1 that it is hidden

Control variables

The following values can be queried and changed through the normal data management channels.

grd_x (format = 4s1) The control's x position relative to its layer

grd_y (format = 4s1) The control's y position relative to its layer

grd_width (format = 4s1) The control's width

grd_height (format = 4s1) The control's height

grd_zindex (format = 4s1) The control's z-index position. This sets the stacking order of
controls within it's layer where 0 is at the back (furthest from the
eye).

grd_hidden (format = 1u1) The control's visibility. A value of 0 indicates that the control is
visible and 1 that it is hidden

Storyboard Suite Overview

20

grd_active (format = 1u1) A value of 1 states that the control is active (can receive and react
to events) and 0 for an inactive control (cannot receive or react to
events)

grd_opaque (format = 1u1) Indicates if the control is opaque to events. If opaque (1), the control
will block events from being handled by other controls. If the value
is 0, the events flow through the control to ones behind it.

grd_findex (format = 4s1) The control's focus index. This sets the focus on a control in a
navigation sequence, where 1 sets the focus on the first control, 2
sets the second, etc. A value of 0 indicates that the control is not
focusable.

In order for a control's focus index to be changed dynamically at
runtime, the focus value must be initially set to a non-zero value in
Storyboard Designer.

Table variables

A table contains all of the control variables and also a set of table specific variables. These table specific
variables can be queried but not dynamically changed. In order to change these values in a table, actions
are provided: gra.table.resize, gra.table.scroll. The variables are as follows.

grd_rows (format = 4s1) The number of rows in the table

grd_cols (format = 4s1) The number of columns in the table

grd_visible_rows (format =
4s1)

The number of visible rows in the table

grd_visible_cols (format =
4s1)

The number of visible columns in the table

grd_active_row (format =
4s1)

The row index of the currently active cell

grd_active_col (format =
4s1)

The column index of the currently active cell

grd_row (format = 4s1) The table’s current top left row

grd_col (format = 4s1) The table’s current top left column

grd_xoffset (format = 4s1) The x pixel offset that will be used to determine the origin of the
1,1 table cell

grd_yoffset (format = 4s1) The y pixel offset that will be used to determine the origin of the
1,1 table cell

Maintaining State and Reacting to Changes

In addition to providing a framework for defining the visual display of an application, the Engine
framework contains a data manager that is responsible for maintaining the state information that controls
the behaviour of the application, such as which screens to display and what content to render inside of a

Storyboard Suite Overview

21

control. The Data Manager contains variables that are user-defined (string keys) and typed (string, integer
etc), and can be readily modified.

Most often the Data Manager variables are modified by the application itself as it responds to events in
the system. Events are asynchronous triggers, originating internally or externally to the Engine, that are
in turn mapped to actions that perform work in the system.

Actions are where all of the real ‘execution’ is performed within an Engine. Actions are managed as
extensions to the Engine and are flexible. Some of the built-in actions include changing content in the data
manager, manipulating timers, logging messages or triggering additional events both inside and outside
of the Storyboard framework.

Execution Pipeline
Below is the execution pipeline that is associated with the internal execution of the Storyboard Engine.

Execution begins with the arrival of an input event to the Storyboard Engine's IO Manager. That event is
matched to all of the available actions that are in context by the Action Manager and executed in sequence.
Changes in state will result in the a notification to the Screen Manager which will manage the update and
refresh of the visual display by invoking the appropriate rendering modules based on the current context.

Trigger Event

While the Engine defines a number of standard user interface types of events, there is no limit to the
number of new events that can be created to control custom logic in an application. There can be multiple
event input event sources concurrently generating events, however the events are queued. The delivery of
the events, and potential execution of actions as a result, is serialized by the main application thread. This
serialization is discussed further in the Execution Environment section of this document.

Storyboard Suite Overview

22

Action Execution

The application changes its internal state in response to events via actions bound to particular Storyboard
model objects.

As an event is processed, it is matched against what events the action handlers available in a particular
screen context are expecting. When there is a match between the received event and the expected event,
the action handler is invoked. The action handler is invoked with arguments set in the deployment bundle,
as well as the context of the invocation. The context includes the current screen, the current and focused
controls as well as the event and its payload.

Multiple actions can be bound to a single event. These actions will be serially executed based on the order in
which they were declared in the Design environment. The first declared action is the first action executed.

Actions can be declared on controls, layers, screens and applications. The event to action matching is
performed first for controls based on screen display order (where applicable) and moves sequentially up
the stack to process layer, screen, and the application actions. The execution of actions does not stop when
one action handler is executed, with the exception that if a control is marked as opaque, then no additional
controls will have their action handlers invoked . If an event is directed (an event which has a position)
the only layer which this control is part of will have action handlers invoked, otherwise the actions for
all layers will be invoked. Once control and layer actions have been invoked the following continues to
the active screen and application context. The following diagram illustrates the affects of control flags on
action handlers for a directed event (an event which has a position):

The following diagram illustrates the flow for an event which does not have positional information. These
events may be targeted at a specific control or the focused control.

Storyboard Suite Overview

23

Focus

When an event is received the event is delivered to the currently focused control and this control's layer,
and application. This is true for all events except for directed events such as mouse/touchscreen events
which contain positional data.

The focus control for a screen is determined using the focus index value assigned to a control. A focus index
is an integer value which places the control in the screen focus queue. A focus index must be unique across
a screen. Focus can be navigated via the focus actions which allow for setting focus and moving through the
focus queue (next/prev). The focus actions are described in more detail in the Action Definitions section
of this document.

Data Change

The data change is a meta-stage in the execution pipeline. It is one of many potential outcomes of executing
an action handler in response to an event. However, since most actions cause a change of state, and most
state information and variables are maintained in the data manager, this topic deserves special discussion.

The data manager provides clients with the ability to be notified of data content changes through data
change listener callback functions. Since it is possible for multiple action handlers to be invoked as a
result of a single event, these callback functions should be restricted to a bare minimum of functionality,
otherwise they may introduce undesired delay to the graphical rendering operations.

Data change listener notification/processing occurs after all of the actions have been processed for a
particular event, allowing data changes resulting from multiple actions to be more efficiently processed.

Display Render

The display render action is also a meta-stage in the execution pipeline. As actions are executed, if any
of these actions cause changes to data or state which is relevant to the rendering of content on the current

Storyboard Suite Overview

24

screen, then the display will be refreshed with the updated content. If there is no change in data content
that would affect the current screen, then there is no display update required.

Execution Environment
A Storyboard application may be multi-threaded, however the execution pipeline is single threaded. This
serialization is provided by the servicing of the event queue as each event is processed through the
execution pipeline in sequence.

Internally, within the Engine framework, multiple threads are used to simplify control logic for things such
as supporting multiple input sources, or timed event activities.

The threads that are run as part of the Storyboard framework are generally not signal handling, and mask
off all signals. In certain situations there may be a requirement to handle specific signals, but in those
situations the signal handling behaviour will be documented as part of the component API.

Animations

Animation Action

The Engine supports user defined animations using the animation action, gra.animate. This action
starts executing an animation immediately, monitors the animation, and applies the specified changes as
they have been defined by the user in Designer.

An animation is a named block of operations that will perform changes on Storyboard data values at a
pre-determined frame rate. The individual data changes that occur within an animation are referred to as
animation steps.

An animation step contains the following information:

key The key is a reference to the data object that is going to be changed over the course
of the animation. In general, keys are numeric items such as x or y position, width,
height or transparency (alpha) values. However, it is possible with 0 duration
animation steps to apply a change to any variable at a point in the animation. This
includes text or images.

offset This is the time in milliseconds from the time that the animation was started that
this particular change will start to occur.

duration This is the time in milliseconds over which the change will occur. This value may
be 0 for changes that are not numeric (ie text or image values) or if the animation
step is defined to occur at the start or end of the animation block.

rate For non-zero duration animation steps, this is the change curve that will be applied
to the numeric value from its start value to the end value. Example rates include
linear, ease in (easein), ease out (easeout), ease in out (easeinout) or bounce.

starting value This represents the starting value of the animation. The starting value can be either
a specific value or variable reference, or it can be specified as the current value of
the animation key at the time that the animation starts. Using the current value is
good for animations that need to work generically to achieve some end value.

end value This represents the end value of the animation. The end value can be either a
specific value or variable reference or it can be specified as an offset from the
starting value rather than as an absolute value. Using an offset (or delta) in an
animation makes it easy to perform incremental animations on objects.

Storyboard Suite Overview

25

Animation steps are all synchronized within an animation block so that their data changes will occur in
a synchronized manner. While it is possible to specify arbitrary time offsets and durations, these values
will be mapped onto the nearest synchronized frame slot. The frame slots are dictated by the frame rate
of the animation block.

Animation instances can be labelled with a string id which is an identifier used to provide exclusive
excution. It is possible for many animations to run concurrently, however if two animations have the same
id value, then only the last one invoked will actually run. For example, if you have an animation to shrink
and grow a control, then you only want one of either the shrink or grow operations to occur at one time.
This can be achieved by having the shrink and grow animation actions share the same identifier.

Animations may be stopped at any time by using the animation stop action, gra.animate.stop.

Timer Keyframe Animations

Animations can also be created in the more traditional method of setting a timer and operating on data on
every timer firing. By manipulating data in the timer callback, clients can cause any number of custom
behaviours to occur, as the data changes on variables will automatically be reflected through to the user
interface as would be done at any other time.

The timer callback allows non-traditional data change rates to be applied, as well as flip-book style
animations where a sequence of images is pre-defined and changed on each timer iteration. This could be
achieved through a series of 0 duration animations as of Storyboard 3.0.

Screen Transition Animations

Animations are frequently used during screen transitions. A screen transition is a way to move from the
visible screen to a new screen which may or may not have common layers. By default, screen transitions
can be invoked by using one of the following actions:

gra.screen Transition to a new screen immediately

gra.screen.fade Fade the new screen into the current screen over time

gra.screen.path Slide the new screen in and the old screen out over time, from one of the
following directions

• Left

• Right

• Top

• Bottom

gra.screen.scale Grow the new screen over the current screen

All transition actions, which are time-based, take similar arguments that control the duration of the
transition, the rate at which the transitions will occur, the orientation of the transition, and the number
of frames that should be used. Using these arguments, the designer can control the user experience (i.e.
duration and effects) as well as the overhead incurred on the system (frequency of frame updates).

During a screen transition, four events will be generated to notify the system of the current state. These
events are:

gre.screenshow.pre This event is generated for the new screen being shown. The event will be
generated before the transition starts. This event gives the user a chance

Storyboard Suite Overview

26

to change data via the gra.datachange action or Lua before ther transition
content is updated.

gre.screenhide.pre This event is generated for the previous screen being hidden. The event will
be generated before the transition starts.

gre.screenshow.post This event is generated for the new screen being shown. The event will be
generated after the transition has completed.

gre.screenhide.post This event is generated for the previous screen being hidden. The event will
be generated after the transition has completed.

The following illustrates the sequence of events:

The transitions are written such that if graphics hardware layer support is are available, then these layers,
assuming they are available for use, will be leveraged to lower the processing overhead for the system
during the transition period. Experience has demonstrated that it is possible to achieve smooth transitions
at almost no CPU cost when the hardware capabilities can be properly leveraged.

Scripting
The Storyboard action operation behaviour, based on events and actions, provides a limited amount of
logic capabilities. When more sophisticated glue logic is needed to control behaviour, a scripting language
can be used to interact with the Storyboard environment.

Scripting support is provided through action plugins and there are no limits to which languages may be
used. The default scripting language that is provided with the Storyboard framework is Lua (www.lua.org).

Lua was selected for its small footprint, high performance, and its ability to be quickly integrated with
custom extensions through a well-defined C module programming interface.

For more information about the Storyboard Lua integration, refer to the Scripting with Lua section of this
document.

External Communication (Storyboard IO)
Communication with external processes in the embedded system can be accomplished in several ways.
One approach that provides a strong API while maintaining a loose coupling for the implementation is
to use Storyboard IO.

www.lua.org

Storyboard Suite Overview

27

Storyboard IO, historically known as GREIO, is provided as a plugin for the Storyboard Engine, as well
as a C API and library for external applications to use.

When the Storyboard IO plugin is loaded a channel is created in order for processes to inject events into the
system. A single event queue is used to serialize the events and therefore any events sent via Storyboard
IO will be placed in the queue with standard Storyboard system events. If the external application wishes
to receive events, it can create its own Storyboard IO channel which can have events sent through.
Applications can have multiple receive channels and the Engine has a single input channel. The following
diagram illustrates an application which can send events to the Engine and review events on a named
channel.

For more details about the client Storyboard IO API, refer to the Storyboard IO API section of this
document. For more details about the Storyboard IO action, refer to the Action Definitions section of this
document.

Performance Considerations
All actions are executed within the context of an event delivery and as such their execution will have
an impact on the overall throughput and responsiveness of the system. In particular with Lua scripts, it
is important to limit the length of time that functions take to perform their work or to separate lengthy
operations into separate tasks, threads or processes depending on the operating environment being used.

The screen manager listens for data changes and checks the state of controls to determine when the display
needs to be refreshed. If the data for controls is changing rapidly this may cause thrashing of the display and
possible flicker if not using double buffering. When changing data values, moving controls, or generating
events which would cause the display to be updated, it is advisable to hold the screen manager updates
until all changes have been made. Once modifications are complete the screen manager can be released
and the display updated is needed. The actions are as follows:

1. gra.screen.hold

2. gra.screen.release

28

Chapter 2. Storyboard Designer

Introduction
Storyboard Designer is a design and development environment for creating full-screen applications ready
for deployment to embedded environments using the Storyboard Embedded Engine.

Storyboard applications are designed to be full-screen user interfaces that are designed by graphic artists
and designers. Storyboard Designer incorporates graphic content directly into the application design
process.

Storyboard Designer allows graphic designers to import their artwork and design files as images directly
into the development tool rather than trying to skin desktop style pre-configured widgets. The imported
images (gif, jpeg, png and psd formats are all supported) are used as control surfaces that application
developers can bind action behaviour to, based on externally generated input events.

Designer Environment
Storyboard Designer is intended for use by both graphic designers and embedded applications developers
and is based on the extensible Eclipse framework (www.eclipse.org) [www.eclipse.org].

Graphic designers have a rich set of development tools to create and manipulate images. Storyboard
Designer is not meant as a replacement for these tools, but is intended to provide a binding environment
where static images can be animated into multi-screen applications by allowing graphics designers to easily
import their work into an application design.

Embedded software developers typically work in C or C++ development environments. Storyboard
Designer integrates into the CDT, the most common Eclipse based embedded development environment,
so application user interface development can easily be done side by side with other embedded software
development.

Storyboard Designer Workbench

When Storyboard Designer starts, the user is presented with an initial empty working environment for
application development as shown in the following image. Storyboard Designer presents the user with
a main editing area that displays a visual, WYSIWYG, representation of the application screens as they
are being developed. The editor is the primary interface for development and design of the application.
The editor is opened, like any other standard editor in the Eclipse environment, by double clicking on any
Storyboard Designer file or right clicking and selecting File > Open.

The editor area is surrounded by dockable views that present editing information to the user as the
application is being developed. Many of these views, such as the layer or application view, will provide
information relative to the selection in the current editor. Additional views can be added into the current
display by selecting Window > Show View and then selecting the additional views.

The selection of views and their arrangement around the editor area is called a perspective. The default
Storyboard Designer perspective layout can be customized by dragging, resizing, and re-docking views
in an arrangement that is convenient to individual developer or designer workflows. It is always possible
to reset the layout of the perspective to its default by selecting Window > Reset Perspective from the
main menu.

www.eclipse.org
www.eclipse.org

Storyboard Designer

29

For more details on configuring the workbench refer to Help > Help Contents > Workbench User's
Guide

Eclipse is an extensible framework with a rich set of plugins available from multiple software vendors.
Among other integrations, team collaboration plugins for GIT, Mercurial, ClearCase, SVN and CVS are
all readily available. The Eclipse marketplace (marketplace.eclipse.org) contains a comprehensive listing
of available plugins and extensions.

Anatomy of a Storyboard Designer Project

Storyboard Designer manages its projects within a filesystem directory referred to as a workspace. The
workspace is used to limit the scope of file resources to just those files in the host filesystem that are relevant
for the application(s) design. Storyboard Designer projects correspond to the root directories contained
within the workspace directory.

When a new Storyboard project is created, using File > New > Storyboard Application…, it creates an
initial project structure in the workspace that contains several default directories in addition to the main
Storyboard application design file.

Storyboard Designer

30

The images, fonts, scripts, templates and events directories are automatically scanned for content and that
content is integrated into the application designer tools. In order to import content from the filesystem into
these directories, you can use the File > Import > General > Filesystem option or the standard system
copy and paste or drag and drop from other applications.

Each directory scans for a different type of content:

events This directory and its sub-directories are scanned for event definition files which are
text files that have an extension of .evt. The events contained in the event definition
files are then automatically included in the action trigger event list. Event definitions are
generally automatically managed by the Designer framework when new events are added
or removed using the New Action Wizard.

fonts This directory and its sub-directories are scanned for TrueType™ font files. In general,
these font files have the extension of .ttf. The fonts discovered are automatically added to
the list of available fonts in the font selection dialog. OpenType™ and TrueType container
formats are not supported by Storyboard at this time.

images This directory and its sub-directories are scanned for image file content. Supported image
file formats include gif, jpeg, bmp and png files. Photoshop™ PSD files can be imported
directly as an application or as only the component images using the File > Import >
Storyboard Development > Photoshop PSD File menu option.

Storyboard Designer

31

scripts This directory is scanned for Lua (www.lua.org) [www.lua.org] scripts which have the
extension of .lua. The functions that are found in these scripts are automatically added
to the list of available functions presented in the Lua action argument configuration.

templates This directory is scanned for Storyboard Designer template files. Valid templates are
automatically added to the list of available templates or new actions. For more details
on creating and working with templates, refer to the document sections Working With
Templates and User Defined Actions.

As changes are made in the filesystem, the workspace should refresh automatically and the changes be
reflected in the Storyboard Designer user interface. An automatic refresh may be delayed due to system
activity and can be forced at any time by selecting a project or file in the Navigator view and selecting
Refresh from the right click menu.

Storyboard Simulator

Included with Storyboard Designer is a simulator environment that is a host compiled version of the
Storyboard Embedded Engine. The engine is included with the development environment to provide direct
feedback about the non-static portions of the application such as its screen transitions and animations.
 Since the simulator is in fact Storyboard Engine running in the host environment, what is presented as a
simulation is the same graphical assets and data model that will execute on the embedded target.

Storyboard Designer Editor
The Storyboard Designer editor is the central location for all design activities for your application. It
provides a visual representation of all of the screens of the application and allows designers to edit the
screen content and get immediate feedback about what the look and feel of the application will be.

Editing Content

The default editing mode is to display and edit the entire application, showing all screens and their
composited layers together.

www.lua.org
www.lua.org

Storyboard Designer

32

If, instead of looking at all of the screens of an application together, you want to focus on editing and
working with one particular screen, then you can right click in the editor and select Edit > Screen, which
will open up a new editor window with just that screen's content shown.

If you want to edit just the layer contents, independent of the screens to which they are bound, then you can
right click in the editor adn select Edit > Layers and this will open up a new editor with all of the selected
layers shown individually. If changes are made to a layer in this mode, the change will be reflected in all
of the screens that reference the changed layer.

The right-hand side the editor contains a fly-out palette toolbar that provides the basic visual design
elements for the application; screens, layers and controls. These can be selected and dropped onto the
editor to start building up the application.

Additional editing functionality is available through the right-click menu while in the editor, as well as
from the main menu. This is where you will find functions to manipulate control size, alignment, and z-
order/front-back placement, as well as the creation of new controls, layers, and screens.

Content can be moved within its container by selecting one or more items and then using the arrow keys
to move the item. By default, the movement is in 10 pixel increments when using the keyboard, but if the
SHIFT key is held down while using the arrows the content will move one pixel at a time in the desired
direction.

There are a number of keyboard shortcuts for common operations these can be displayed on-screen by
selecting Help > Key Assist... from the main menu.

Editor Toolbar

In addition to the editing options available right click menu, the toolbar provides functionality that is
context sensitive to the editor being used. When a Designer file is being edited (and the editor area has
focus), then the toolbar provides short-cuts to several common operations.

Storyboard Simulator This will export the Designer file being edited to a Storyboard Engine file
and simulates it using the host based Storyboard Engine configuration.

Zoom Display This controls the current zoom level of the display. This value can also be
adjusted by CTRL+MouseScroll or COMMAND+Scroll using a wheel
mouse or touchpad.

Align and Resize These toolbar actions provide a convenient alternative to manual
alignment by aligning the selected controls automatically with one
another. When a single control is selected the the alignment is performed
relative to the screen. When multiple controls are selected, the alignment
is performed relative to each other.

New Model Elements These toolbar actions provide an alternative to the palette for the quick
construction of screens, layers and controls.

Control Outline These toolbar actions control how the control content is displayed within
the editing environment. By enabling the control outline, a border will
be drawn around controls and layers. By enabling the wireframe mode,
no control content will be drawn, but an outline of the controls is drawn.
These modes can be used to optimize the application layout to avoid
uneccessary damage and redraw operations.

Storyboard Designer

33

Wireframe The wireframe mode turns off all of the render extension drawing within
the controls and shows only an outline of the controls, layers, and screens
similar to what is provided by the Control Outline functionality.

This functionality is useful to minimize the amount of control overlap that
occurs so as to prevent excessive redraw damage areas.

Direct Editing

In addition to the standard model editing functionality, some render extensions have direct edit
functionality. To enable the direct edit on a control with one of these render extensions, the user needs to
do a slow double click on the control.

3D Model When the direct edit mode is activated, a set of xyz axes will appear in the
bottom left corner of the control. At that point the user can use their mouse
to move the model. Holding the shift key allows the user to rotate the model
using their mouse. As well, holding either the x, y, or z key isolates that
axis when either translating or rotating the model. When the user is finished
editing the model, they just need to click anywhere outside of the control to
end the direct edit.

2D Polygon Editing When direct edit is activated, the user can create and edit a polygon on the
screen using hotkey toggles. Hold 'shift' and click within the control bounds
to create new vertices (ideally, 3 vertices are needed to have a sufficiently
visible polygon). Hold 'control' and click on a particular vertex to delete it
from the polygon. Hold 'alt + shift' and click near an edge to create a new
vertex splitting that particular edge. Vertices can be moved by simple click
and drag. Exit quick edit by moving mouse out of the control bounds.

Storyboard Designer Views

Actions View

The Actions view provides a display of all of the available actions that are in context for the given selection
in the editor.

Storyboard Designer

34

Actions can be added through the right-click menu in the editor, Add > Action… or in the Actions view
directly.

The content of the action list can be sorted by selecting the action table title. When actions are sorted by
their triggering event, the order in which they appear will also correspond to the order in which they will be
evaluated within the same context. If two actions are bound to a gre.press event on the same control,
for example a Data Change and then a Screen Fade, then the first action in the list will be executed (Data
Change) before the next action (Screen Fade). The order of these events can be adjusted by right-clicking
the event and selecting Move Up or Move Down as required.

The content of the action list is automatically populated based on the Designer model object selected in
either the editor or in the Application Model view. The content of the list can be populated in several ways:

Selection Only This will show only the actions associated directly with the selected
model object.

Sub Hierarchy This will show the actions of the selected model object and all of its
child model objects.

Application Hierarchy This will show all of the actions in the project

In addition to controlling how the list is populated using the toolbar selections, it is also possible to use
the name filter at the top of the list to match against specific event names. This is particularly useful when
used in conjunction with the Application Hierarchy to search the entire project for custom events.

The triggering event, action type, and context can all be edited inline in the action table. Each action also
has its own set of parameters or configuration options. These values can be changed in the lower display
area of the Action view once an action selection is made. When the action types are changed, as many
argument values from the original action will be migrated to the new action as long as the argument names
and types match.

Storyboard Designer

35

Application Model View

The Application Model view displays a tree representation of the model objects that make up the
Storyboard application.

Storyboard Designer

36

Storyboard Designer

37

The tree representation aligns with the Storyboard model representation and allows editing operations to
be performed on elements that may not necessarily be visible within the editor. For each of the application,
screen, layer, and control objects the Application Model displays the Actions and Data Variables associated
with that model object.

The visibility of the layer instances and controls can be quickly adjusted through the Application Model
view by toggling the setting in the visibility column. The changes made here will be immediately reflected
in the editor and will also be reflected in the Storyboard Engine runtime file as the initial setting for the
layer instance or control.

Since layers are displayed as layer instances, the tree will show layer and control content several times
in the tree. If the Link with Editor toolbar option is enabled, when a model object is selected in the
Application Model view the editor will automatically scroll to present the appropriate context of their
selection. The same behaviour can be achieved by double-clicking on a model object if the view's content
is not synchronized with the editor.

The Application Model view tree also displays all of the scripts, animations, and unused layers that are
currently a part of the application design.

You can copy and paste model elements, such as screens, layers, controls, and actions, from one application
to another using this view.

Animation Timeline View

The Animation Timeline view provides an editing environment for creating the animation blocks that are
used by the animation action.

The initial Animation Timeline presentation displays a list of all of the animation blocks defined in the
application. Those animations whose names are highlighted in bold represent animations that are currently
referenced. The list on the right is updated, based on the selected animation, to show a list of all of the
locations in the project where this animation is currently referenced.

Double-click on an animation or select the Edit in Timeline button to change the display mode of the
Animation Timeline from a list of all animations to an timeline based editor focused on the selected
animation block. To create a new animation, right-click in the list and select Add Animation, or select the
Add Animation from the toolbar.

Storyboard Designer

38

The timeline editing mode displays a list of the variables that are being modified during the animation and
a timeline view indicating the starting time offset and step duration for a particular animation step relative
to all of the other animation steps running in this block.

A single click on the animation step will show the properties view where values can be modified.

Property values can be editted / calculated inline.

Double clicking beside the animation step will create an exact copy of that step.

A click on the animation step will display a pop up window to show all its information when the step is
too small to do so.

Select multiple animation steps and use the align left, align right, distribute, or pack tools to easily line
up the animation steps in the timeline.

Using the 'Design Context' drop down, a context can be selected that the animtion will use to resolve
variables in. This context will also be used to determine what screen displays during an animation preview
(see below).

Right click on an animation group to duplicate its functionality and assign it to another variable.

You can drag and drop the block within the display to adjust the starting offset or lengthen or shorten
its duration by resizing the block. The start, end values, and the rate of change can be adjusted inline
by double-clicking the values or by right-clicking the block. Animation steps can also be reordered by
dragging and dropping them in the list. For animations with many steps, you may want to choose the
compressed display option from the menu.

If you want to make a more significant change to the animation step, or to change several values all at
once, select a step and click on the 'Change Variable...' button in the properties view and the Animation
Step Dialog will open. You will also get this dialog if you right-click and select Add Animation Step to
add a new variable to animate in this block.

Storyboard Designer

39

The Animation Step Dialog allows you to select the variable that you want to animate and then fine tune
all of the characteristics of the animation step including how you want the values to change and when.

Working with Animations

There are a number of ways to get started creating animations. It is always possible to manually create
a new animation from the Animation Timeline View and add the variables to the animation one-by-one,
however Storyboard provides a few shortcuts to make this process easier.

Storyboard Designer

40

Record Animation

To create new animations, Storyboard provides a mechanism that allows you to record a series of changes
to your application and have those changes automatically incorporated into a new animation. This is called
Animation Recording mode and it can be accessed in the Storyboard Editor from the top menu bar.

The animation recorder will track all changes that are made to model objects in the application, and when
the recording is finished, it will automatically create new variables for those static values that have changed.
It then gathers all of the changed variables and places them into a new animation ready to replay that
visual change.

While recording, you have the ability to take snapshots of it throughout. Taking a snapshot will cause
subsequent steps created by changes during the recording to be offset by the duration of the previous step.
This way, you can create a sequence of consecutive animation steps rather than having all of them execute
simultaneously. The snapshot action is located right next to the recording action, and will only be enabled
if you are currently recording.

Note

When using the animation recorder, any structural changes made to the model will be
automatically reverted and lost at the end of the recording. The model recording only tracks
changes to existing model attributes and variables, creating variables automatically for any static
elements that change.

This means that if during the recording any controls, variables, actions, or any other model
elements are created, they will not be captured in the recording and they will also not be present
in the model when the recording is stopped.

Add Animation

To quickly add new variables to either a new animation or to an existing animation, you can use the
Animation Variable command that is available from the editor toolbar or from the right-click menu on
many model objects.

Storyboard Designer

41

When this option is used, a dialog will open that displays all of the variables that are associated with the
current selected object. You can quickly select those variables you are interested in, select the animation
that you would like them to be applied to, and immediately start fine tuning that animation.

Preview Animation

Preview the currently selected animation by clicking on the animation preview action. This will open up a
new dialog in which an un-editable version of the application will be displayed and the animation will run.
The bottom bar contains actions that control the preview. Play/Pause will stop and restart the animation
from the current frame. While the preview is paused, use the Fast Forward/Rewind buttons to move ahead/
back one frame at a time. Interact with the progress bar to jump to any frame and click on the Replay
button to reset the animation to frame 0 in preparation for another run.

Storyboard Designer

42

By default, the preview window will guess the screen to display by looking at the variables being animated.
However if the user has selected a design context for the animation in the timeline, that context will be
used to determine the screen to display in the preview.

Images View

The Images view provides a thumbnail presentation of those images that are currently included in the
application design.

Storyboard Designer

43

The content for the Images view is automatically pulled from the image file content contained in the images
directory of the Storyboard project. New content that is imported into this directory in the filesystem
will, upon a workspace refresh, be automatically shown in the Images view. Supported image file formats
include PNG, JPG, GIF and BMP files. In order to import Photoshop PSD file content, the images must
be imported using the File > Import > Photoshop PSD File wizard.

You can drag and drop images from the Images view directly into an application design. By default, a
new control will be created that matches the image's size and the image source is a static value pointing
at the drag and dropped image.

Within the Images view it is also possible to quickly switch an image that is used in one context to another
using the Swap Image With... right-click menu. For example, if a number of controls were using an image
as a button background and a new image was available that provided an updated look, then after importing
the new image one could select the existing image and choose Swap Image With... to quickly change all
instances within the application to the new look.

All files contained within the images folder will attempt to be processed as images, regardless of their file
extension. If an unrecognized image file is encountered, by default it will not be displayed. This behaviour
can be adjusted by de-selecting the Show Only Images in the view's drop-down menu. This menu
also provides the ability to group images by directory which is a convenient way to classify images that
are used in different parts of your user interface.

As an application evolves, it will often accumulate a number of unreferenced or duplicate resources. The
Image view offers a few utilities to help manage these images.

Storyboard Designer

44

• The Resource Clean Up toolbar action allows the pruning and deletion of unreferenced images from
the application design.

• The Consolidate Images toolbar action identifies duplicate images, references all consolidated into a
single resource, and removes duplicate images from the workspace.

• The Trim Images toolbar action works on selected images to remove all of the extraneous transparency
that surrounds non-transparent content. This can significantly impact the performance of rendering on
systems without hardware graphic rendering capabilities.

• The Split Images toolbar action works similarly to the Trim Images option but transforms a single
image with significant areas that are completely transparent into multiple images with that transparency
trimmed away.

Layers View
The Layers view provides a thumbnailed display of the layers used by the currently selected screen and
also displays a thumbnail of all of the other layers that are available for use but are not bound to the
currently selected screen.

Layers are categorized as either being included on the current screen or not. Layers can be added or
removed from the current screen by dragging and dropping them either into or out of the current screen
area, or by using the delete key.

Layers are listed according to their front (top) to back (bottom) order z-order presentation. This order
can be manipulated by dragging and dropping the layers within the view or using the toolbar buttons. In

Storyboard Designer

45

addition, the Layer view provides the ability to change the visibility within the application. If the visibility
or z-order are changed, the change is immediately reflected in the editor and will also be reflected in the
Storyboard Engine runtime deployment.

Using the toolbar controls in the Layers view it is possible to create new layers and also to open up the
Layer editor mode to work with layers independent of the screens with which they are associated.

Navigator View

The Navigator view is a standard filesystem style explorer limited to showing only content available in
the Storyboard workspace.

The Navigator view only displays content that has been imported into the workspace and starts with
the top level Storyboard Project directories that have been created. Since the workspace allows multiple
Storyboard projects to be shown, it is possible to work on multiple projects concurrently all within the
same workspace with multiple editors open targeting different Storyboard projects. Content and resources
can be copied and pasted among the different editors.

The Navigator view provides a variety of filters to hide/show different file types as well as the ability to
group projects together as 'working sets' and then to only display the content from those working sets. For
more details on configuring the Navigator and filtering workspace content refer to the Eclipse help Help
> Help Contents > Workbench User Guide.

Storyboard Designer

46

Outline View

The Outline view provides an overview of the entire editor. The outline content will change to reflect an
outline of the editor that currently has focus. Within the Designer environment there are two Outlines of
interest, the Storyboard editor outline and the Lua editor outline.

The Storyboard editor outline displays a scaled visual presentation of the entire contents of the editor. If the
editor is in Application mode then all of the screens of the application will be shown. If it is in Layer mode
then all of the layers will be shown, and similarly for the other editor modes. By moving the highlighted
area within the Outline view it is possible to change the viewport of the current editor.

The Lua script editor outline displays a listing of all of the identified functions in the file and supports the
quick navigation to those functions by double-clicking the function name.

Storyboard Designer

47

Problems View

The Problems view shows a list of all problem markers that are created within the workspace. Storyboard
provides a project analysis mode that runs in the background to examine Storyboard models and report
on design concerns. To enable or disable this analysis mode you can change the Storyboard workspace
preference setting in Windows > Preferences > Storyboard > Enable Background Storyboard Project
Analyzers.

When the Storyboard Project Analyzers are enabled as workspace resources change the model will be
scanned and analyzed and discovered issues will be reported into the Problems View. Issues that are
scanned and reported include:

• Mismatched image color depths. If a 32bit color image is used with a 16bit color display there is a
possibility the image will be distorted on the target

• Fill hides content. When a fill masks on top of other content, this can be an ineffective use of processing
resources on target devices.

• Missing render extension content. For example, a control with an image render extension that is not
defined or does not exist. This may result in additional computations being performed by the embedded
target.

• Scaled or rotated static image content. Since static images do not change at runtime, the work required
to scale or rotate an image could be replaced by a fixed cost of rotating or scaling the image during the
design. This will reduce the amount of processing required at runtime.

Properties View

The Properties view displays information about the current selection in the editor and also provides the
ability to change and adjust the properties of that selection. The Properties view is the primary editing
location for fine tuning the visual presentation and adjusting data bindings of the application.

Storyboard Designer

48

For each model element, application, screen, layer and control, there is a different property interface that
provides access to those items that are most relevant to the selected context. The following is a non-
exhaustive list of some of the property pages.

Application The application properties, active when the editor background is selected,
displays the application name, size, and color attributes.

Screen The screen properties, active when a screen is selected, displays the screen
name and indicates if the screen is the start screen for the application.

Layer Layers and Layer Instances share a common set of property pages. A Layer
Instance is simply a Layer that has been associated with a particular screen.
Changes made to a layer's size or its controls will be propagated to all layer
instances. Position, opacity, and 3D rotation attributes are properties that are
not associated with the layer but are associated with a layer instance.

Storyboard Designer

49

Group Group properties contain the name of the group as well as information about
the group's origin. In this property panel you will also find the functionality
for automatically re-configuring a group's origin based on it's control content.
This is very usefull when you are taking a group and then converting it for use
in a more generic Storyboard Designer template.

Control Controls contain the most sophisticated property pages, because in addition
to the name, size, and position information the property page also contains all
of the configuration parameters for the render extensions associated with that
control. The render extensions are listed in the Z order (front to back) that they
will be rendered within the control and this can be adjusted by dragging and
dropping the render extensions within the list entry.

Render Extensions Render extension property pages show the argument details of the selected
render extension. This is the same information as is shown within the Control's
property panel, but without all of the additional details associated with the
control.

Actions The property pages for actions show the parameters that are available for
editing and the presentation changes based on action type. The content that is
shown here is the same as the information presented in the Action View but
in the case where multiple actions are selected, the content can be changed
across the entire selection.

When multiple elements are selected, the Properties View will try and show the most suitable content
possible. If all of the selected elements are the same, then the properties view will display the common
properties and any changes that are made will apply across all of the selected elements.

In certain cases, such as when multiple controls with different render extensisons are selected, it may not
be possible to provide a completely synchronized display. In these cases the display will show a common
set of attributes and hide the attributes that are not common among the selected elements.

Templates View

The Templates view provides users with a list of Storyboard Designer templates that are available for use
in this project. The list of available templates is generated automatically from the contents of the project's
templates directory.

When a template is selected, its description along with a graphical preview of the template will be shown
if they are available. To create a new model object (control, layer, screen etc) that is template-based, select
one of the template items and drag and drop it into your application.

Not all templates create new Storyboard model objects. Some templates simply enhance the functionality
of an existing object, and when this is the case, when a model object is selected you can right-click on the
object and select Templates Apply to access a list of available templates.

For more information about creating templates, see the document section entitled Working With
Templates.

Variables View

The Variables view is similar to the Actions view in that it displays all of the data variables that are in
the context of the current selection.

Storyboard Designer

50

Once a variable is defined and associated with a particular model object context (application, screen, layer
or control) then the variable can be referenced as a parameter for actions and render extensions.

There are two different types of data variables that can be defined. A normal variable contains a name, a
type (ie number, string) and the value matching the type that should be used when the variable is referenced.
To facilitate working with repetitive data within a table control, a special type of variable called a table
cell variable can be created. This variable contains all of the same attributes as a normal variable, but is
extended to contain additional row and column information that can be used to specialize a particular value
at a given table row and column.

The content of the variable list can be sorted by selecting the appropriate variable table title and the variable
values can be edited inline in the variable list by double-clicking on the appropriate field that you wish
to change.

What variables are shown in the Variables view, similar to the Actions view, is automatically populated
based on the Designer model object selected in either the editor or in the Application Model view. The
content of the list can be populated in several ways:

Selection Only This will show only the variables associated directly with the selected
model object.

Sub Hierarchy This will show the variables of the selected model object and all of its
child model objects.

Application Hierarchy This shows all of the variables in the application, regardless of what the
current selection may be.

In addition to controlling how the list is populated using the toolbar selections, it is also possible to use
the name filter at the top of the list to match against specific variable names. This is particularly useful
when used in conjunction with the Application Hierarchy to search the entire project for a variable.

Storyboard Designer

51

Variable Creation

New variables are frequently created at the point where they are required, for example within the property
display for a render extension or the properties for an action argument. When variables are created in this
context, then their types will automatically be determined from the context of use. However variables
can also be created directly from within the Variables view in which case the user can select the type of
the variable. Care should be taken to match the type of the variable to its intended use, for example text
variables can not be used as adjustments for numeric values and vice versa.

In all cases the variable creation will open the New Variable wizard. From within this dialog you can select
the name of the variable, its data type, and the value to associate with the variable. From this dialog it is
also possible to create table cell variables that span a particular row/column range

By default, the variable will be created and associated with the current application, screen, layer, or control
that was selected when the New Variable wizard is launched. However this association can be changed
on the second (optional) page of the New Variable wizard where the variable can be explicitly assigned
to a different model object.

Note

The type of a variable is important for the Actions or Render Extensions that may use them. If a
variable is mistyped, such as a string variable is created but referenced in a location expecting an
RGB color value, then the results are undefined. In general, it is a better idea to create variables
from the Actions or Render Extensions that will be using them to ensure the proper typing occurs.

Storyboard Designer

52

Generating Events on Variable Change

It is possible to associate a user defined event to be generated when a variable's value is changed. These
events are designed to facilitate the synchronization of user interface elements that may not be directly
associated with the variables whose data is changing. A typical scenario would be to monitor the position
or location of a control and fire a notification when it changes in order to maintain a corresponding
relationship in another control.

In order to specify the event to be generated, simply enter the event name into the Event column of the
desired variable or select the variable from the list and right click and select Bind Event which will open
the event definition list allowing you to pick from existing events or create a new one.

The variable change events are designed to be used to synchronize the user interface display with an
updated variable value and are not meant to be used as counters for each changed value of a variable. For
each variable change an event is added to the event queue only if there is not already an event with the
same name in the queue waiting to be processed. Until that event is serviced, no additional events will be
queued for that variable, or any variable generating the same event name.

Notes View
The Notes view displays notes attached to model objects within the current project.

Notes contain text to help organize a project or keep track of useful information specific to a particular
model object. Notes also have a type associated with them which can be selected using the combo box in
the editing area. To create a custom type, simply type in the combo box instead of using the drop down.

Storyboard Designer

53

When a note with a custom type is added, that type will be added to the combo box so that it can be quickly
selected from the drop down when making other notes.

Notes attached to the current project are displayed in the table. It can display in three modes:

1. In context - only displays the note associated with the select model object.

2. Sub hierarchy - displays the note associated with the selected model object and any notes associated
with model objects with are children on the selected object.

3. Full application - displays all the notes in the application.

You can search for notes by typing in the filter text box. The contents of the table can be sorted by clicking
on the header of one of the columns (e.g. clicking “Model Element” will sort the notes alphabetically by
the name of the model object the note is attached to).

Notes can be added to any model object through the right-click menu (New->Note…), or by selecting the
model object and clicking either the New… icon in the Notes view or by clicking in the text box when it
says “Click to add a new note…”. To delete a note select it in the table and then click the red X, or right-
click on it in the table and select delete.

You can have the editor display the model object that a note is associated with by right-clicking a note
in the table and selecting Go To->Screen.

All the notes in the current project can be quickly summarized in a list by clicking “Toggle Full View” (the
yellow page icon).

Creating a Storyboard Designer Project
A new Storyboard project can be created in many different ways; as a new application, as a Photoshop™
import, or as an import from an existing Storyboard Embedded Engine (GAPP) deployment file.

New Storyboard Application

In order to create an empty Storyboard application, select File > New > Storyboard Application from
the main menu (when in the Storyboard perspective, otherwise select Project…).

Storyboard Designer

54

This will open up the New Storyboard Application wizard that prompts for the name to use for the
Storyboard project. This name will also be used for the initial Storyboard application file.

The next page of the wizard provides the ability to customize the initial application screen settings. The
screen settings, once applied, will remain locked for the design period of the application.

Selecting Finish will close the wizard, create the new project and automatically open the Storyboard editor
on the project:

Storyboard Designer

55

Photoshop PSD File Import

Often an excellent starting point for the application design is the graphics design that was used to do the
initial preview of the application’s functionality. The Photoshop™ file import provides the ability to use
these design files to jumpstart the application development process.

The import wizard is initiated through the File > Import main menu item. This will bring up the initial
import dialog.

Storyboard Designer

56

Selecting Photoshop PSD File and clicking Next will move to the next page that allows you to select the
PSD file that you want to import from the local filesystem and allow you to either create a new Storyboard
project (Into New Project) or to incorporate the imported content into an existing project (Into Existing
Location).

Storyboard Designer

57

Select whether to import in to an existing project or in to a new project. You can control how the PSD
import is executed by changing the PSD import options.

Once the Photoshop™ file is imported the application opens in the Storyboard editor. The layer information
from the Photoshop™ file is maintained, and the layers created as part of the model are displayed in the
Layers view.

The screen with the name of the PSD file that is now a part of the application reflects the last visible state
of the file when it was saved and contains those layers that were visible during that editing session.

You can also control how the importer will import elements from the PSD file to your project by following
a naming convention in your PSD file. If you end the name of a PSD layer group with "_layer" this will
cause all groups and layers beneath it to be added to a layer with that name. If you name a PSD layer
group with a name ending with "_control" this will create a new control with all layers in the group as
image render extensions. If you name a PSD layer group with a name ending with "_group" this will cause
all layers and "_control" groups beneath it to be added to a group with that name. Also, if you name a
PSD layer with a name that ends with "_up" and a then have a layer with the same name only ending in
"_down" immediately following it, this will create a control that will act as a button. It will have an action
for press and an action for release and outbound that will switch the image render extension in the control
between the up and down images.

The following image demonstrates how to structure your Photoshop psd file to get a layer with a
background image control and a button with actions associated with it to change the image when pressed.

Storyboard Designer

58

Below is how the new project is laid out after the psd file has been imported into Storyboard.

Using the proper naming conventions, in Photoshop for the button images, have created actions and
variables for the button control automatically.

How Photoshop Content Will Import to Storyboard
By understanding how content from Photoshop will import into Storyboard gives users the ability to plan
and organize a project from Photoshop. The Photoshop import feature makes the transition from the design
environment to application development a single process. Users will be familiar with the structure of
Storyboard application because the application model is built similarly to Photoshop’s Layer Palette View.
Projects in Storyboard can also receive multiple imports of Photoshop files so that a project can be added
to as content becomes ready.

Storyboard Designer

59

Storyboard Designer

60

Properties and structure from Photoshop that are not supported in Storyboard:

• Photoshop files that are not 8-Bit and in RGB colour mode

• Layer Effects: -eg- bevels, drop shadows

• Layer Blending Modes: -eg- overlay, multiply

• Content that uses Layer Masks or Vector Masks

• Group folders that contain the same type of Group folders: -eg- a Storyboard Layer can not contain
another Storyboard Layer

• Clipping Masks

Prior to importing a photoshop file into Storyboard, content and properties that are not supported in
Storyboard can be flattened, rasterized or converted to smart objects in order to maintain the same
appearance between the photoshop file and application design.

Storyboard Embedded Engine Import

Storyboard Designer can also round-trip export/import the files created as part of the Storyboard Embedded
Engine, also known as ‘gapp files’ since they typically have a .gapp file extension. These files are imported
in the same way as a Photoshop™ file, using the import wizard from the File > Import main menu

Selecting Storyboard Embedded Engine (GAPP) and Next takes you to the next page of the wizard allowing
you to select the embedded engine file to be used for import.

Storyboard Designer

61

Existing Project Import

Occasionally it may be convenient to share an existing project from one workspace to another. If the project
is archived or its directory structure completely copied to a new location then it is possible to import the
Storyboard Designer project as an existing project.

Storyboard Designer

62

Selecting File > Import > General > Existing Projects into Workspace will launch the above import
wizard. Selecting either the archive file or the project directory results in the Projects list being populated
with all detected projects. Selecting one or more of the projects to import and then selecting Finish causes
a new project to be created in the workspace.

Project names must be unique. If you are tyring to import an existing project into the workspace, then it
is required that the colliding project names be temporarily renamed so that there are no name collisions
in the workspace.

Storyboard Designer Development

Simulating and Exporting an Application

After an application has been created, it is a good idea to run it through the simulator to validate the
runtime behaviour before exporting the application to a Storyboard Embedded Engine deployment file.
 The simulator is a host-based instance of the Storyboard Embedded Engine and should exhibit the same
operational behaviour as the target, though there may be differences in the level of performance obtained
because of the different CPU and graphic characteristics.

Simulating an Application

Simulating a Storyboard application is a straightforward process. From the Navigator view, right-click the
Storyboard designer file (*.gde) and select the Storyboard Simulator option.

Storyboard Designer

63

Alternatively, you can select the Storyboard Simulator option from the toolbar ...

or the Storyboard Simulator Configurations from the toolbar ...

which will allow you to customize how the simulator is launched.

The options include configuring which plug-ins are to be loaded by the simulator and what level of
verbosity should be used to run the simulator.

Storyboard Designer

64

When the simulator is launched it will perform an automatic export to a Storyboard Embedded Engine to
a temporary directory and run the application in its own window on the host system.

Storyboard Designer

65

Exporting to a Storyboard Embedded Engine

Export a Storyboard Embedded Engine configuration from the main menu using File > Export. This
launches the export wizard.

Select the Storyboard Embeded Engine (GAPP) option and click Next. Select the Storyboard application
file (*.gde) that you want to export and the output location that you want to export to.

Storyboard Designer

66

Select Finish to create the specified directory, create a Storyboard Embedded Engine (*.gapp) runtime file,
and export the resources from the images, fonts, and scripts directories.

It also possible to perform headless exports of the Storyboard Design files to the Storyboard Embedded
Engine files from a command line or scripting environment.

PATH_TO_INSTALL/Storyboard_Designer/storyboard/Storyboard -
application com.crank.gdt.ui.gappexport
model=<PathToGDEFile[,PathToAdditionalGDEFile,...]>
output=<PathToGAPPFile>

Where the model is the full path to the Storyboard Designer model file. In the situation where multiple
GDE model files are being joined together it is a comma separated list of model files where the first model
file will be used for the start screen and the remaining models will be used for additional content. The
output parameter specifies the filesystem path where the Storyboard Engine file will be created and the
directory containing that file will be used to for the additional resource directories (scripts, images and
fonts).

Exporting as a Native Android Application

Exporting as an Android application will create an Android package that is suitable for use on Android
devices. The packages generated will only work on devices running Android version 2.3.3 and above.

To create an Android package, select File > Export to start the export wizard:

Storyboard Designer

67

Select the Export as Native Android Application option and click Next. From the export file selection
dialog, select the Storyboard application file (*.gde) that you want to export. Choose appropriate names
for the application name, android package file name, and the package name. Select the directory you want
to export to and options for application orientation and fullscreen. For Android devices version 4.4 and
newer, the fullscreen option uses Android's sticky immersion fullscreen.

Note

Currently, without rooting an Android device, there is no way to disable the bottom bar for some
Android 3.0+ devices.

Storyboard Designer

68

Click Next to bring up the a page with options for choosing a specific Storyboard Engine to use, setting
Storyboard runtime options (see Storyboard Engine Options for list of available runtime options), and
selecting the icons for the application. Click the tabs under Advanced Options to modify the default
Permissions, Manifest file or Keystore settings (optional). If you don't need to alter the settings, just click
Finish to use the defaults.

Storyboard Designer

69

Select Finish to create the Android application package file (APK) in the directory specified. To transfer
this application package to an Android device, simply copy the package onto a USB or SD card.

Translation and Internationalization

Storyboard makes it simple to translate and internationalize the text content of your application. Dynamic
text content is treated the same as any other dynamic content that is rendered to the display. Within the text
render extension, the translatable content should be associated with a variable. Any changes that occur to
that variable, will trigger a screen re-draw to occur if that variable is being used in the current display.

Storyboard Designer

70

Changes in string content is automatically reflected, making the translation activity significantly less labour
intensive. To apply the translated content to the application, simply update a number of data variables with
the appropriate UTF-8 encoded text string.

Two examples of translation are provided in the Storyboard samples. To further understand the
internationalization process, be sure to check out translation and thermostat Storyboard samples available
via File > Import > Storyboard Sample.

In some circumstances, most notably with non-latin character sets, it may also be a requirement to
dynamically change the fonts being used to map to an alternative font that provides the appropriate glyph
support for the characters being rendered. Additionally it may be that a change in translated text requires
additional attributes to be adjusted, such as font point size or control dimensions, to accommodate the new
translation. These can be adjusted as a straightforward data change to a dynamic variable. In all situations
the UI will automatically refresh to show the new content.

Storyboard provides two editor functions that allow translations to be quickly prototyped in the context
of the design environment.

Storyboard Designer

71

The Create Translation toolbar item scans through the application, identifies all of the bound text
variables that are used, and extracts them to a comma separated (csv) file that contains the Storyboard
variable key and the translated text string. By default, this file is saved in the translations directory
of the project. This file can serve as the basis for performing a dynamic load of translated content or can
be used by designers to ensure that the UI is appropriate for different language configurations.

The Apply Translation toolbar item scans the translations directory of a project for suitable
translation files and presents a dialog that allows the user to immediately change all of the variable
definitions in a project to the values declared in the translation file. This feature allows developers a quick
way to preview their content in different language configurations.

Creating and Editing Translation Content

We have explored two tools for editing and creating translation content. The recommended tool is Open
Office Calc as it has the capability to character encode (csv) files in UTF-8. Some applications, such as
Microsoft Excel are unable to save (csv) files using UTF-8 character encoding. We discuss two methods
to create UTF-8 character encoded (csv) files. One solution is more straightforward and uses Open Office
Calc and the other is a solution using Microsoft Excel and Notepad.

Open Office Calc

It is free and can be downloaded from www.openoffice.org [http://www.perforce.com/product/
components/eclipse_plugin].

1. Using Calc, open a spreadsheet file via File > Open... (note: this can be a spreadsheet created using
Calc or Excel) .

2. Save the file as a (csv) file via File > Save as... > Text CSV(.csv)

http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin

Storyboard Designer

72

3. When saving a (csv) file, Open Office Calc will ask which character encoding you wish to use for the
file, be sure to choose Unicode(UTF-8).

Microsoft Excel

The solution to create UTF-8 encoded (csv) files using Excel is to create a tab seperated file in Excel by
saving as a unicode text file then replace the tabs with commas in Notepad, save the file and change the
file extension to (csv) with encoding set to UTF-8.

1. Save the spreadsheet in unicode from within Excel File > Save As... > Text CSV (.csv)

2. Open the .txt file from within MS Notepad

3. Select one of the tab characters and copy the character (ctrl+c)

4. Using the Replace tool File > Save As... > Text CSV (.csv) or (ctrl+h), paste the tab character in the
"Find what" field (ctrl+v) and insert a comma in the "Replace with" field.

Storyboard Designer

73

5. Save the file File > Save As... > All Files (*.*), change the file extention from .txt to .csv and be sure
to change the encoding in the drop down menu to UTF-8.

6. Now the resulting (csv) file is UTF-8 character coded and can be opened from Excel to ensure that the
data is as correct. Do not save the file from Excel or the UTF-8 encoding will be lost.

More information about the Microsoft Excel solution can be found at https://help.salesforce.com/apex/
HTViewSolution?id=000003837&language=en_US [http://www.perforce.com/product/components/
eclipse_plugin].

OpenGL ES 2.0 Custom Shader, 3D Model and
Compressed Texture Support

Storyboard provides the ability to leverage 3D capable OpenGL ES 2.0 hardware to render and display
3D objects and also create custom shaders to modify and adjust the display of controls.

Note

This functionality is only available for OpenGLES rendering systems.

Custom Shader

A complete description of OpenGL ES 2.0 shaders is beyond the scope of this document and is better
treated in detail in the OpenGL ES Shader Language [http://www.khronos.org/registry/gles/specs/2.0/
GLSL_ES_Specification_1.0.17.pdf] specification. This document will focus on the shader programming
aspects that are relevant to Storyboard developers.

Note

At this time, shader effects are not visible within the tool and are only visible when using an
OpenGL based runtime or simulator.

http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

Storyboard Designer

74

Storyboard provides the ability to hook in a fragment shader and/or a vertex shader to be associated with
the rendering of a control element. The shaders are provided as files and are associated with the control
through the Advanced tab of the control's properties. Here you can select either a specific file for either
shader or bind the shaders to variables that will resolve to files in the project at runtime.

The shaders will be applied to the resulting texture that is the outcome of having all of the current render
extensions applied to it. That is to say that the control is effectively rendered as it would be in the normal
sense, but the final result is provided as a texture to the shaders to manipulate before it is finally rendered
to the display.

Shader programs have three types of variables: attributes, varying, and uniforms. Attributes are passed
into the shader from the render manager and contain data such as vertex locations, and texture coordinates.
Varying variables are calculated in the vertex shader and passed into the fragment shader after being
interpolated based upon the location of the fragment. Uniforms are also passed in from the render manager,
but are typically used for purposes other than storing the geometry being rendered, for instance, containing
a global alpha value which can be used to blend an entire model.

When writing a shader program, it is important to follow the conventions for attributes and uniforms
established by the render manager. Otherwise, it will not be able to pass in geometric data and nothing
will be rendered. Below is a minimal vertex shader which matches the functionality of the built in vertex
shader for images.

attribute vec4 myVertex;
attribute vec4 myUV;

varying vec2 vtex;

uniform mat4 projMatrix;
uniform mat4 mvMatrix;

void main(void)
{
 gl_Position = projMatrix * mvMatrix * myVertex;
 vtex = myUV.st;
}

The myVertex and myUV attributes contain vertex and texture coordinates respectively. The projMatrix
and mvMatrix contain the projection and modelview matrices, which are used to transform the input vertex

Storyboard Designer

75

position, which is then assigned to the gl_Position for the vertex. The varying vtex is used to hold the
interpolated texture coordinate which is then passed to the fragment shader. The render manager looks
up myVertex, myUV, projMatrix and mvMatrix by name when it loads the shader, so these names must
be used in any custom vertex shader. The varying name must match between the vertex shader and the
fragment shader.

Below is a fragment shader which matches the functionality of the built in fragment shader for images,
and shows the minimal code required to work with the Storyboard render manager.

#ifdef GL_ES
precision mediump float;
#endif
uniform sampler2D sampler2d;
varying vec2 vtex;

void main (void)
{
 gl_FragColor = texture2D(sampler2d, vtex);
}

The initial precision declaration is required by OpenGL ES, but not supported by OpenGL, and is set with
a preprocessor conditional. The sampler2D uniform controls which texture unit is used when sampling a
texture. The render manager only supports a single texture. The varying variable is interpolated based upon
the vertex values in the vertex shader, and is passed into the sampler to look up the color at the fragment
location. This is assigned to gl_FragColor and becomes the fragment color.

It is also possible to pass data from Storyboard variables to shader uniform variables, subject to two
constraints: the model element for the variable must be the control for which the custom shaders are being
used and the variable type must be float. When the custom shader is loaded, a list of all of the uniforms
present is created. The name of each uniform is then compared to the list of variables attached to the
control, and if a matching name of the appropriate type is found, it is used to the set the value of the
uniform when the control is rendered.

As an example, consider animating a custom shader to do a simple fade-in based upon the value of a timer.
First, create a variable of type float called "current_time" for the control with the custom shader. Then
create an animation using the animation timeline which changes the value of the variable from 0.0 to 1.0
over a few seconds, and create an appropriate trigger for the animation, for instance a mouse press event.
Then, edit your fragment shader as follows:

#ifdef GL_ES
precision mediump float;
#endif

uniform float current_time;
uniform sampler2D sampler2d;
varying vec2 vtex;

void main (void)
{
 gl_FragColor = texture2D(sampler, vtex) * current_time;
}

Storyboard Designer

76

When the control is rendered, the value of the uniform current_time will be set from the value of the control
variable current_time, which will cause the color read from the texture to be scaled from 0.0 to 1.0 over
the duration of the animation, causing a fade in effect.

Compressed Textures

The OpenGLES 2.0 render manager now supports compressed textures on supported hardware. The
formats supported are PVRTC1, both 4BPP and 2BPP. This compression format is supported on most
PowerVR graphics chipsets.

To determine if the chipset supports it, running Storyboard with a verbosity level of 6 (-vvvvvv_ will
print out, on startup, the GLES extensions supported by the chip. If PVRTC is supported, you will see
GL_IMG_texture_compression_pvrtc in the extension string list.

Storyboard will manually decode these images if the runtime being used does not support them. Should a
project that was running on a PowerVR chip and using compressed images be run on a SW runtime that
does not support them, the images would still decode and render correctly, just without HW acceleration.

PVRTC provides a 8x improvement in memory size (A 1024x1024x4 BMP would take 4MB of memory,
whereas a PVRTC image would take 512K)

Compression tools can be found at:

• PVRTexTool [http://community.imgtec.com/developers/powervr/tools/pvrtextool/]

• Using texturetool to Compress Textures [https://developer.apple.com/library/ios/
documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/
TextureTool.html]

Working With Templates

Storyboard Designer allows developers to create re-usable design components, templates, that can be
shared among multiple projects.

A template is created by selecting a Storyboard Designer model element in either the Storyboard editor or
the Application view and right clicking and selecting Create New Template. A dialog will prompt for a
template name, description, and the name of the file to save the template.

Templates may be composed of a selection of one or more controls or one or more groups. If several
controls considered together provide a logical functionality, then it is generally a better idea to encapsulate
them within a group and create a template from that group rather than template the multiple controls
together. Templating a group more easily allows the functionality to be encapsulated so that the template
can be re-used several times within an application. When templating several controls, it is possible to
template content originating on different layers. In this situation the position used for the control is going
to be the position relative to it's parent layer and not the position of the control relative to the other controls
in that particular screen context where the parent layer offset may be adjusted or different from screen
to screen.

With any content being templated, the template generator will scan the selected model objects (controls
and groups) and any child model objects and include over any variables, actions and render extensions that
are directly referenced. This scanning will also attempt to identify external resources such as images, fonts

http://community.imgtec.com/developers/powervr/tools/pvrtextool/
http://community.imgtec.com/developers/powervr/tools/pvrtextool/
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/TextureTool/TextureTool.html

Storyboard Designer

77

and script files that are used by the model object being templated. This will also include any referenced
animations associated with animation actions that the templated content triggers. In the situation where a
Lua script is referenced, the entire Lua file will be included so for this reason it is a good idea to keep the
functionality used by the content to be templated isolated into its own file.

When the template is applied if any of the templated resources (images, fonts, scripts etc) don't exist in the
target project then they will be transfered from the template to the targetproject. If the resources already
exist, then it is assumed that these resources should be used in place and the existing resources are not
modifed.

Templates are stored in an external file independent of the project where they were created so that they can
be shared and incorporated into other projects by adding them into the target project's templates directory.
Once they have been added to that directory they will be parsed by the project and will be displayed in
the Templates view and be made available for use. By default new templates are saved in that project's
templates directory.

Working with Multiple Application Design Files

Sometimes in a large project it is desirable to split the application design work not only among multiple
application designers, but also among multiple design files so as to minimize the amount of conflict that
needs to be managed by a revision control system such as subversion, git or mercurial.

In order to facilitate working with multiple files, Storyboard maintains each design as a stand-alone
free runnable application, even when it may be later incorporated into a larger unified application. This
separation allows a more rapid development cycle as application developers are simulating and tuning
content in a more focused environment rather than having to consider all other system functionality.

To create a unified application, the Storyboard simulators and exporters have been modified to allow them
to accept multiple application files which they will merge together to produce a single unified output for
the Storyboard Engine.

Getting Started

Starting a multi-file application development is the same as starting a regular project since before you can
have two projects, you need to have one project. Typically the initial project created will be the master
application and will host the majority of the shared resource content. This is only a convention and not
a technical requirement.

Once another application is required, for example to represent a distinctly themed area of the unified
application, then you will want to create another Designer application model file within the base project.

Note

Currently multi-file applications are all hosted in the same project so that they can ensure proper
sharing of image, font, and script resources.

You can create another application file in several ways:

Create a blank application using: File > New > Storyboard Application ... and select "New Model in
Existing Project"

Storyboard Designer

78

Import PSD content into a application: File > Import > PSD ... and select "Into an Existing Project as a
new File"

You can also simply copy and paste an existing application and rename the *.gde file to bootstrap a new
design.

Doing this will result in multiple application model (*.gde) files that are all contained within the same
project. They all reference the same image and script resources.

Integrating Application Content

Screen transitions provide the means to tie together multiple applications to form a single, larger, unified
application.

In order to indicate that one application (the source application) will be making a reference to screens in
another application (external reference), the source application should list the external application in its
Properties. Go to Application > Properties > External Model References

Storyboard Designer

79

Once an application is added as an external reference, the screens from that application will show up in
any of the Screen transition selection lists as well as any animation definitions..

Layers from any listed external applications can be added to an application by explicitly importing them
using:

Add > Existing Layer > Import External Layer

Once a layer is added as an external layer, then a copy of the original layer from the external application
is snapshotted and incorporated directly into the source application. At this point, the external layer can
be used with any source application screens just like any other layers.

Simulating and Exporting Multiple Model Files

Once applications have been developed, shared content leveraged, and transitions between application
screens established the next step is to simulate or export the unified application.

The Storyboard simulation configuration dialog, accessed via Run > Storyboard Simulator Configurations
allows multiple model files to be specified. All models in the 'Selected Models' block will be included in
the application when launched.

Storyboard Designer

80

The first source application in the list (tagged as Primary) will be used to determine the unified application's
launch screen.

Similarly exporting a runtime application to be used with Storyboard Engine, Android, or iOS targets also
allows multiple Storyboard application files to be selected. In these export scenarios, you will be prompted
to select the source application that should be used for the unified application's launch screen.

If there are no conflicts among the selected applications they will be merged together and converted into
a single unified application and used for the user-selected operation of simulation or export.

If there are conflicts among the resources then the differences will need to be resolved before continuing
with an application merge.

Resolving Conflicts and Synchronizing Changes

When multiple applications are merged together to form a unified application, the following occurs:

• All layers from all applications are assembled together into a unified list of available layers. If two or
more layer names are the same then those layers have their content compared. If the content is identical
then the merge continues. If the layer content differs, then an error is flagged and the user will be
prompted to resolve the differences and the application merge stops.

• All application/global level variables from all applications are assembled together into a unified list
of global variables. If two or more variable names are the same then those variables have their values
compared. If the values are identical then the merge continues. If the variable values differ, then an error
is flagged and the user will be prompted to resolve the differences and the application merge stops.

• All animation definitions from all applications are assembled together into a unified list of available
animations. If two or more animation names are the same then those animations have their definitions
compared. If the animation definitions are identical, the merge continues. If the animation definitions
differ, then an error is flagged and the user will be prompted to resolve the differences and the application
merge stops.

• All screens from all applications are assembled together into a unified list of available screens. If two
or more screens have the same name, then an error is immediately flagged and the user is prompted to
resolve the differences.

The external referencing of model elements relies on names remaining consistent during the application
development. In some instances, if names change it may be possible for content to become unsynchronized
and it may need to be resynchronized on an application by application basis.

The application properties page provides a synchronization action that scans the project for externally
referenced content and then compares that content to the source reference. If there is a difference, then the

Storyboard Designer

81

difference is flagged as a conflict for resolution and the user is prompted for different ways to solve the
conflict based on the nature of the issue

Circles and Arcs

Using the circle and arc controls are an easy way to quickly add spherical objects to your Storyboard
application without having to create them from scratch.

It is easy to manipulate the circle or arc controls by adding variables to their various properties. You can
then dynamically change those values through Lua script or external sources. (thirdparty applications or
device drivers)

Storyboard Designer

82

Our circles_sample pictured below is located in the Samples directory of your installation and demonstrates
ways of using our arc control.

9-Patch

9-Patch is technique used to scale an image in such a way that the 4 corners remain unscaled. The four
edges are scaled in one axis and the middle is scaled in both axis. 9-Patch support has been added to
Storyboard Designer to make scaling images on embedded applications easier. Instead of having multiple
button images of various sizes, customers can now have one image that scales and maintains image quality.

Storyboard Designer

83

9-Patch images can be designed and edited directly in the Storyboard Design environment. You can quickly
analyze and convert existing large or scaled image content to 9-Patch format to achieve immediate memory
and runtime performance improvements.

Groups

Groups have been added to alleviate the situation of placing many render extensions in the same control.
Customers now have the ability to group individual controls together. Groups can contain actions and
can be manipulated using their x, y, and hidden internal variables. More information about Group data
variables can be found in the "Group, Control and Layer Data Variables" section.

Adding groups to a Storyboard application is very straightforward. You can group existing controls
together by first selecting the ones you want in the Main Editor, then right-clicking and selecting Add ->
Group. This allows you to name a group and adds all the highlighted controls into that group.

Storyboard Designer

84

You can also add a group to your Storyboard application and then decide later on what controls you want
in that group. Simply right-click in the Main Editor, and select Add -> Group. After the group has been
created you can drag the needed controls into the group using the Application Model view.

Groups are highlighted upon selection in the Application Model or if they are ALT-selected in the editor.
The selection displays the outline of the group contents and allows for resizing. Groups are also shown
in the wireframe and outline mode.

Scrolling Layers

Scrolling layers provide the ability to scroll multiple controls on a layer in an easy fashion similar to a
scrolling table. Select the “Enable layer scrolling behaviour” check box in the Layer’s properties view to
enable scrolling on a layer.

Storyboard Designer

85

A scrolling layer behaves as a viewport to the controls on the layer. This means the size of the layer should
be the size of the intended viewport. By scrolling the layer, Controls that are placed outside of the viewport
will be brought into view.

When scrolling, the layer itself is not moving, the controls within the layer are. To measure this, the
variables grd_xoffset and grd_yoffset may be used to determine how far the scrolling layer has scrolled
away from its origin.

Orientation: Vertical or Horizontal scrolling

Decay: Maximum time in milliseconds the scrolling layer will scroll after a flick.

Bounce: Number of pixels for the scrolling layer to bounce when reaching the edge of the contents within
the layer.

Scroll Friction: A number from 0 to 100 to determine the friction level of the scrolling layer. With higher
friction it becomes more resistant to moving when swiped and more inclined to slowing down when
released.

Target Configuration

iOS Devices

When exporting to an iOS Device all related files and available plugins are packaged into a single
application for the device. Since this is the case there is no need to set up environment variables or specify
runtime options on the target, since this will all be done in storyboard designer when you export the
application.

To configure an iOS device to run your apps you need to set up a few things from Apple first:

Storyboard Designer

86

1. Xcode

2. iOS developer account

3. A code signing certificate

4. The device ID of the apple products you will be running on

5. The identifiers of the applications you will be making

6. A provisioning profile

Xcode

Xcode no longer includes the command line tools and need to be downloaded separately from the app store.

iOS Developer Account

To obtain a developer account you will need to go to https://developer.apple.com, click on iOS Dev
Center, then click register. After that follow their step by step instructions and you will be a registered
iOS Developer.

Code Signing Certificate

Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click "Certificates" in the left tab bar. If you do not have a
certificate, there will be an option to submit one. To do this you will need to make a Signing request. You
can do this by launching Keychain Access, located at /Applications/Utilities. Then go to Keychain Access
> Certificate Assistant > Request a Certificate From a Certificate Authority. Enter your email address and
your name, then check "save to disk". Once that has been generated, go back into the certificates page of
your provisioning profile and submit it for approval. After the certificate gets approved, download the file
and open it, and it will be added to you keychain access.

Device IDs

Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click "Devices" in the left tab bar. Click the add devices
button at the top right of the page. Here you will need the device's name and Device ID. To get these
connect the device to your computer and find it in iTunes. With the device selected click on the device's
serial number, and it will switch to the Device's Identifier. Then click Edit > Copy Identifier (UDID). Now
return to your Provisioning Portal, paste the identifier and enter the name of the device.

Application IDs

Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click "App IDs" in the left tab bar. For this section we
recommend you set up a generic App ID and have it accept all of you applications. However if you wish
to enable other iOS like Push Notifications or In-App Purchase, you will need to make an ID for that
individual app. To create a generic App ID, click the Add New App ID Button. Now enter a description
of the app this Id will match with, ex "Application Development ID". Now enter the Bundle identifier.
If this is a generic App ID simply type "*". If this is for a specific app, enter the app's identifier. ex
"com.cranksoftware.storyboardApp". Now click submit and you can go back to the previous page, find
this App ID and configure all of the options this specific application needs.

Provisioning Profile

Log into your iOS Development account and click on the iOS Provisioning Portal link at the right hand
side of the page. In your Provisioning Portal, click "Provisioning" in the left tab bar. Click the New Profile

Storyboard Designer

87

button. Create a name for this profile. Select the certificates that will be used by this profile. Select the
App ID that will be used by this profile. Select the Devices that will be used by this profile. Once this is
completed, download the YourProvisionProfileName.mobileprovision file and save it to your computer.
When you are exporting your Storyboard application, you will need to tell storyboard where this file is.

User Defined Actions
New actions can be added to the Storyboard Engine through standard programming extension points. In
order to make those new actions available within the Storyboard Designer development environment it is
necessary to describe the name and type of the action arguments in a template so that they can be properly
presented within the Storyboard Designer user interface. This can be done on a project by project basis
using an action template file.

An action template is an XML file with the following formatted content:

<actiontemplates>
 <template name="NAME">
 <arguments>
 <element name="ARG_NAME" type="ARG_TYPE" />
 ... as many elements as there are arguments ...
 </arguments>
 </template>
 ... as many templates as there are actions ...
</actiontemplates>

The user defined fields are as follows:

NAME This is the name of the action as it appears in the Storyboard Engine runtime (gapp) file.

ARG_NAME This is the name of an argument option as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_TYPE This is the type of the argument and can be one of the following:

string A text string value

integer A numeric value with an optional range specified by 'min' and 'max' attributes

float A floating point numeric value with an options range specified by a 'min' and
'max' attributes

boolean A boolean true/false value

In order to be automatically included in a Storyboard Designer project, the action template file should be
placed in the templates directory of the project where it is to be used. The name of the template file can
be anything valid for the file system, but it should contain the file extension .sbat in order to identify
it as an action template file.

User Defined Render Extensions
New render extensions can be added to the Storyboard Engine through standard programming extension
points. In order to make those new render extensions available within the Storyboard Designer

Storyboard Designer

88

development environment it is necessary to describe the name and type of the render extension arguments
in a template so that they can be properly presented within the Storyboard Designer user interface. This
can be done on a project by project basis using an render extension template file.

A render extension template is an XML file with the following formatted content:

<rendertemplates>
 <template name="NAME">
 <arguments>
 <element name="ARG_NAME" type="ARG_TYPE" />
 ... as many elements as there are arguments ...
 </arguments>
 </template>
 ... as many templates as there are actions ...
</rendertemplates>

The user defined fields are as follows:

NAME This is the name of the render extension as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_NAME This is the name of an argument option as it appears in the Storyboard Engine runtime
(gapp) file.

ARG_TYPE This is the type of the argument and can be one of the following:

string A text string value

integer A numeric value with an optional range specified by 'min' and 'max' attributes

float A floating point numeric value with an options range specified by a 'min' and
'max' attributes

boolean A boolean true/false value

In order to be automatically included in a Storyboard Designer project, the render extension template file
should be placed in the templates directory of the project where it is to be used. The name of the
template file can be anything valid for the file system, but it should contain the file extension .sbrt in
order to identify it as an render template file.

Photoshop Re-Import Feature
The Photoshop™ Re-Import feature enables the user to re-import a new or revised PSD file to replace
existing images in a project's image directory. The re-import wizard is initiated from the main menu »
File » Import

In the import dialog that appears, select the source PSD file to re-import and the destination Storyboard
application where the new PSD image content will be placed. Then choose Next.

On the left of the dialog window is a list of image content from the PSD file. On the right is the content
of the project’s image directory. Selecting any PSD image will show candidate image match content from
the PSD file. By clicking the “move right” arrow the selected PSD image is adopted as the new project
image and replaces the model selection.

Storyboard Designer

89

Below the separator in between the two viewers is the 'Match All Images' button. This will go through and
automatically map any unique images of the same name. The name and extension must be identical for
images to be mapped. If there is more than one identical match, the image won't be mapped.

Matching and unmatching can be undone and redone by using the common keyboard shortcuts 'CTRL-
Z' and 'CTRL-R'. If a PSD image does not have a project image with the same name it can still be added
to the project image directory by clicking Copy to Image Directory button. Content that is being replaced
will be shown in a preview below.

Choosing 'Next' brings you to a page that allows the user to update the bounds of any of the selected
matches from the previous page. Any matches from the previous page that have changed location in the
re-imported PSD file will appear in the list at the top. Selecting an item from this list shows the location
change in the preview at the bottom, similar to the previous page. If you want to use the new location,
check the box beside the match before hitting 'Finish'.

Storyboard Designer

90

After updating the bounds, the next page allows the user to review any new images that have been added
in the re-import. An image is considered new if it has no identical match in the current model, and it hasn't
been mapped to anything in the first page. Selecting an item will preview it in the thumbnail below, similar
to the previous page, and checking it will import the new control into the model.

Storyboard Designer

91

After choosing to replace, copy or add at least one image, clicking the Finish button will show a prompt that
gives the option to overwrite image files that are being updated or keep a copy of the older images that are
being replaced. The Photoshop PSD Re-Import feature is meant to update existing content using consistent
naming. Using the Import Photoshop PSD File is better for adding new content to an existing project.

Storyboard Designer Utilities
Storyboard Designer offers many features to assist with the efficient development of your embedded user
interface. Some of these features improve performance by reducing potential runtime inefficiencies, while
other features speed the development of the application by providing greater insight into an existing design
or allowing multiple designers to work in parallel on the application's user interface.

Design Notes

The Design Notes export wizard is used to generate an HTML or PDF report of the storyboard project.

Storyboard Designer

92

The Design Note export can be accessed from File > Export > Storyboard Design Notes or by right-
clicking a Storyboard GDE file and selecting Export Storyboard Design Notes. This will open a dialog
allowing the user to select the file system location for the design report and the format, HTML or PDF,
that the design report should be exported to.

The Design Notes report can be customized to contain a variety of information about the design model.
Some of the available content options include screen transition information, content thumbnails, resource
usage, and event and variable bindings.

Storyboard Designer

93

It is also possible to generate headless Design Note exports from the Storyboard Design files that can be
used from a command line or scripting environment.

PATH_TO_INSTALL/Storyboard_Designer/storyboard/Storyboard -application
com.crank.gdt.designreport.designreport model=PATH_TO_GDE_MODEL format=[pdf|html]
output=PATH_TO_OUTPUT_FILE

The model is the full path to the Storyboard Designer model file and output parameter specifies the
file system path where the report and associated resources will be created. The format parameter can be
set to either html or pdf to indicate HTML or PDF outputs respectively.

GoTo Dialog
The GoTo dialog provides a quick way to locate and navigate to items in the application design. The GoTo
dialog is activated when the CTRL+1 (Windows/Linux) or COMMAND+1 (Mac) keys are pressed while
working in the main editor.

Storyboard Designer

94

The Name and Value entries allow you to narrow the search criteria for the object you wish to find. The text
entered here will filter the results in the list to only display search results matching what you have typed:

Name This selection limits the search to the primary name of the objects being searched. The name
field also searches the name attributes of render extension and action attributes.

Value This selection limits the search to the value field of actions or render extensions being searched.

Storyboard Search Dialog

Storyboard Search provides an extension of the Go To functionality. Rather than providing the ability to
see and navigate to a single selection, the results of a search are displayed in a tree format.

To search, invoke the Search dialog via the Search menu item or the CTRL+H key command. This will
open up the search criteria dialog.

Storyboard Designer

95

Similar to the GoTo dialog, the Name and Value search criteria allow model object names to be searched
or in the case of actions and render extension arguments and variables also their values.

The search results will be displayed hierarchically in the Search view:

Where applicable, double clicking the results will cause the appropriate model element to be selected and
brought forward in the main Storyboard editor.

Resize Storyboard Application

Use the Resize Storyboard Application dialog to create a new Storyboard Designer model file, with
different screen width and height settings, based on an existing model file.

Storyboard Designer

96

The application resize action dialog allows a Storyboard Designer model file to resize its screen
dimensions. Since all of the layers, controls, and render extensions in a model are placed at specific
locations within the model, the resize operation provides several parameters to allow the layers, controls
and render extensions to be either re-positioned or re-scaled as appropriate.

Storyboard Designer

97

The output of the resize action is a new model file located in the same file system location as the source
model file. Creating this new scaled model file next to the original model file allows the designer to validate
and inspect the scaled result before deciding to replace the original file.

Storyboard Variable Resizing

Adjust Location: The resize action will scale the location of all the user defined variables in the application
that have been bound to a render extension location or center of rotation points.

Adjust Size: The resize action will scale the size of all the user defined variables in the application that
have been bound to a render extension size.

Screen Resizing

Adjust Size: The resize action will scale the size of all the screens in the application.

Layer Resizing

Adjust Location: The resize action will scale the location for all of the layer instances in the application.

Adjust Size: The resize action will scale the size of all the layers in the application.

Control Resizing

Adjust Location: The resize action will scale the location for all of the controls in the application.

Adjust Size: The resize action will scale the size of all the controls in the application.

Render Extension Resizing

Adjust Line Width: The resize action will change the width of lines that appear in any render extension
with the style set to “Line”. The line width will be scaled by the value of the smallest scale factor, be it
that of height or that of width.

Image Render Extension Resizing

Enable Scaling: The resize action will enable the scale flag on all image render extensions. Maintain
Control to Render Extension Size Ratio: “Enable Scaling” by itself will stretch images to fit the entire
control and may not have the desired effect. This option will preserve the ratio from Control to Render
Extension so the images will not look disproportionate or out of place within the control.

Text Render Extension Resizing

Adjust Font Point Size: The text font size will be scaled by the value of the smallest scale factor, be it
that of height or that of width.

Animation Resizing

Adjust Location: The resize action will scale the start and end values for grd_x, grd_y. Adjust Size: The
resize action will scale the start and end values for grd_width and grd_height.

Data Change Resizing

Adjust Location: The resize action will scale values for grd_x, grd_y. Adjust Size: The resize action will
scale values for grd_width and grd_height. For the best results we recommend performing a resize action
will each of the options enabled and revisiting the resize dialog if one or some of the options did not
produce the desired results. The resizer is a tool to reduce the amount of time spent in the event that an

Storyboard Designer

98

application must be resized, with that said, there is usually some fine grain touches left to be completed
by the application developer.

Resource Clean Up Wizard
Run the Resource Clean Up wizard from within the Images view or by selecting the model file in the
Navigator view and selecting Resource Clean Up... from the menu.

The Resource Clean Up wizard is used to remove resources that are present in the workspace but are
no longer referenced by the project. In the wizard, the list on the left side contains the resources (fonts,
images) and is used to select the resources that should be maintained/kept in the project. All resources that
are not selected will be permanently removed from the project and file system. The preview on the right
side contains a preview of the selected resource and the file system location of that resource.

This tool can only detect those resources that are directly referenced by the project. It is important that
resources that are referenced from external programs or scripts be manually checked so as to prevent their
removal from the project.

Once all of the resources to remove have been identified, selecting OK will perform the permanent removal
of those files from the file system.

Consolidate Images Wizard
The Consolidate Images Wizard can be launched from the toolbar in the Images view.

Storyboard Designer

99

Launching the Consolidate Images wizard will start an analysis of all of the images in the workspace. These
images are compared byte by byte to determine if their content is identical and can safely be consolidated
together into a single reference.

Once the analysis is complete, a dialog will present the results showing the duplicate images that have
been detected and provides a visual comparison of the source and reference images to ensure that they
are indeed different.

By default, all duplicates will be consolidated into a single reference. To remove a reference from being
consolidated, deselect the item.

Selecting OK will search the model and consolidate variable and argument references to unify their
references.

After all of the references have been combined there are likely to be a number of images that are no longer
used. These can be immediately deleted from the workspace at this point.

Trim Images Wizard

The Trim Images Wizard can be launched from the toolbar in the Images view.

Storyboard Designer

100

Launching the Image Trim wizard starts an analysis of either all (no selection made) or just the selected
images from the Image view. It scans the image looking for transparent pixels on the borders of the image,
in order to shrink the image to it's smallest possible size.

The Wizard displays the selected images (or all images, if no selection) that have any pixels to be trimmed.
The image preview shows the candidate image, and provides information on how much of the image will
get trimmed. By default, the wizard will make copies of the original, untrimmed files and keep them in
your file system. If you would like to delete the original untrimmed files, simply unselect the appropriate
checkbox.

The wizard will also refactor all controls containing this image, while maintaining the proper control size
and the position of the image within each control.

Split Images Wizard

The Split Images Wizard can be launched from the toolbar in the Images view.

Storyboard Designer

101

Launching the Image Split wizard starts an analysis of either all (no selection made) or just the selected
images from the Image view. It scans the image once, looking for transparent pixels and calculates how
the image should be split to get rid of the maximum amount of transparent pixels.

The preview displays a red outline of exactly how the image will be split, and will update according to
how many horizontal and vertical splits you specify. The percent of pixels eliminated is displayed in the
top right corner.

When you select OK in the dialog the image split operation will proceed on those images you have selected.
After splitting the images, all references in your app to the previous image will be refactored such that the
controls containing those images will be replaced with the new split images positioned appropriately.

If you would like to leave the controls as they are and not perform the refactoring, simply deselect the
"Refactor controls" check box at the bottom of the wizard.

Merge Control Images

This Merge Control Images can be launched from the Application Model view or by right clicking on the
desired controls: right click on control(s) Manage -> Merge Control Images.

This can be used when you have one or more controls with static image content that will not change during
runtime. It is sometimes more efficient to flatten those render extensions into a single static image. The
controls must be in the same layer for the wizard to work correctly.

Collaboration and Team Development
Traditional development techniques rely on a common source code repository that is revision controlled
using tools such as SVN, Perforce, Clearcase, GIT or Mercurial. Storyboard Designer projects are designed
to be directly integrated into this type of environment so that the UI can be shared and improved by many
developers working in parallel.

Storyboard Designer

102

Revision Control System Integration

In order to provide an integrated support for various revision control systems, Designer uses
the Eclipse Team Provider plugins. Plugins are available for most revision control systems from
marketplace.eclipse.org [http://marketplace.eclipse.org]. Here are links for several of the more common/
popular plugins:

• Subversion svn Plugin: http://marketplace.eclipse.org/content/subversive-svn-team-provider

• Mercurial hg Plugin: http://marketplace.eclipse.org/content/mercurialeclipse-was-hgeclipse

• GIT egit Plugin: http://marketplace.eclipse.org/content/egit-git-team-provider

• Performce p4 Plugin: http://www.perforce.com/product/components/eclipse_plugin

Comparing and Merging Model Files

The Storyboard Designer model file is a single model file. Conflicting changes to this model file can be
visually inspected and merged from within Designer using the model comparison tools.

To compare two Designer files within the same project or file system workspace. Select both of the model
files (i.e. file1.gde and file2.gde) in the Navigator view. Right click and select Compare With
> Each Other from the menu.

To compare a Designer file that is in under revision control to a previous version, right-click on the file
and select the menu entry Compare With. Different version control systems provide different specific
terms, but . In the sub-menu you can select Latest from Repository or Revision if you want to compare
with a specific version.

In either case, local comparisons or comparisons with versions from a revision control system, the
comparison will open an editor that will highlight the differences in the model elements in the two files
and allow each of the changes to be viewed in context and merged or discarded as may be required by
the final design.

http://marketplace.eclipse.org
http://marketplace.eclipse.org
http://marketplace.eclipse.org/content/subversive-svn-team-provider
http://marketplace.eclipse.org/content/mercurialeclipse-was-hgeclipse
http://marketplace.eclipse.org/content/egit-git-team-provider
http://www.perforce.com/product/components/eclipse_plugin

Storyboard Designer

103

Triggering a comparison provides a hierarchical breakdown of the models' objects, with two sides
representing the two files. Any differences between the two models will be highlighted in yellow. The
two types of differences are property changes and additions(deletions). Property changes show the value
on both sides of the viewer. They are marked by a delta icon in the centre sash in the two way case, or
an arrow representing the direction of the change in the three way case. For additions(deletions), the side
representing the file that has the object will show it, and the other side will show empty space. Additions
and deletions are marked by a '+' icon or a '-' icon, and an arrow representing the direction of the change
in the three way case. The comparator will also show any unchanged objects/properties, for reference and
context. They are displayed in gray text, with no background color. In a three way comparison with an
ancestor, it is possible that a conflicting change exists, where both sides have modified the same object/
property from the original ancestor. These will be highlighted in red.

The toolbar contains actions and options to merge changes and switch the view. From left to right, here
is a description of each one:

• Toggle Graphical Compare: Enables the graphical compare, which will appear on the bottom half of the
screen and allow the user to visualize the changes on a model object.

• All Changes Filter: Displays all changes across all model objects.

• Application Filter: Displays changes on the application level. This includes application properties, and
any application level variables or actions that have been added or deleted.

• Screen Filter: Displays changes on the screen level. This includes screen properties, layer instance
properties and layer instance additions/deletions.

• Layer Filter: Displays changes on the layer level. This includes layer/control/render extension properties
and control/render extension additions/deletions.

Storyboard Designer

104

• Animation Filter: Displays any changes related to animations.

• Toggle Unchanged Properties: Shows or hides the unchanged objects/properties.

• Copy Left-Right/Copy Right-Left: Merges changes that have been selected in the viewer. If a model
object is selected, any changes to its children will be merged.

• Copy All Left-Right/Copy All Right-Left: Merges all changes. In the two way case, this is non-
destructive and will not delete any deletions, but will add the additions. In the three way case, this repects
the direction of the changes.

After making changes, saving the comparator tab will appropriately save the changes to the model file(s).
Exiting the comparator without saving will revert any applied changes. The global undo/redo functions
are also available to revert and re-apply changes.

Comparing and Merging Projects
Entire projects and directory structures can be compared as easily as comparing single model files. This
will allow developers to understand which resources such as images, fonts and script files have changed in
addition to the changes to the model logic. The same as a model file comparison, this can be performed by
right clicking on two projects or directories and selecting Compare With > Each Other from the menu.

When this comparison is done a hierarchy is presented indicating files that have changed, been added or
removed from the source or the destination directory. Selecting any of these files will open a comparison
editor that is appropriate for that file type.

105

Chapter 3. Storyboard Engine
Introduction

The Storyboard Embedded Engine (Engine) is a runtime framework that allows a description of a graphical
application to be interpreted and executed. The graphical application description, known as a deployment
bundle, contains all of the instructions required to render screens to a display and to process events that
would cause state transitions to occur in the application, potentially leading to additional screens being
displayed.

The separation of the visual display logic from the system behaviour is achieved through the use of events.
 Events are asynchronous notifications containing a data payload that can be delivered to the Engine from
multiple sources to trigger changes.

Target Configuration
When building a target configuration all of the application files and target binaries must be copied to the
target system. The following is a description of the files needed for the target system and their runtime
requirements. Collectively these files are referred to as a Storyboard deployment bundle.

Application Files
The deployment bundle must be accessible to the embedded target. The deployment bundle is exported
from a Storyboard Designer model to a location on the host file system. For more information creating a
deployment bundle, refer to the section Exporting to Storyboard Embedded Engine in this document.

A deployment bundle generally includes:

• A Storyboard application file (required). These are usually files with the extension .gapp.

• A scripts directory (optional). These are usually Lua script files that provide glue logic for the
application

• An images directory (optional). These are image assets that are required by the application.

Storyboard Engine

106

• A fonts directory (optional). These are fonts that are required by the application

Users may include additional directories as required by the application, but these are the standard contents
of a deployment bundle

The directory structure below the root directory of the deployment bundle should not have its layout
changed after being exported from Designer. All paths using within a Storyboard application for resources
such as images, fonts and scripts are relative to the base directory containing the Storyboard application.

Setting up Storyboard Engine
An engine execution environment is provided for each supported operating system, architecture and
rendering system. The target system should be configured with the Engine (sbengine) and plugins required
for the target application. All plugins are loaded via the SB_PLUGINS environment variable and all
libraries are loaded via the LD_LIBRARY_PATH environment variable.

For example:

export SB_PLUGINS=/home/crank/linux-imx6yocto-armle-opengles_2.0-obj/
plugins

export LD_LIBRARY_PATH=/home/crank/linux-imx6yocto-armle-opengles_2.0-
obj/lib

On Windows systems, there is no LD_LIBRARY_PATH so the PATH environment variable should be used
instead. Similarly on MacOS, DYLD_LIBRARY_PATH should be used instead of LD_LIBRARY_PATH

Running Storyboard Engine
The Storyboard Engine executable (sbengine) is located in the bin folder of the Storyboard Engine directory
structure. Now that the Storyboard Engine and Storyboard application (development bundle) are located
on the embedded target and the Environmental Variables have been set, the Storyboard Engine can run
a Storyboard application as follows:

sbengine thermostat.gapp

Command line Options
The Storyboard Engine is a self contained executable which loads plugins for added functionality. The
Engine can be run as follows:

sbengine [-i] [-v] [-o] [storyboard application]

Table 3.1. Options

OPTION DESCRIPTION

-i displays which version of sbengine and related libs
are being used

-v verbosity, more v’s means more verbose output.

-o plugin or manager options

Each plugin or manager defines its name and possible options.

As the verbosity level to storyboard is increased, you will see more information about the execution of
the runtime engine.

Storyboard Engine

107

Engine Manager Options

Table 3.2. Action Manager Options

OPTION DESCRIPTION

None None

Table 3.3. Data Manager Options

OPTION DESCRIPTION

None None

Table 3.4. IO Manager Options

OPTION DESCRIPTION

-oio_mgr,queue_size=4096 will limit the event queue size to a maximum of 4K.
If the queue exceeds this size, events will be dropped
and diagnostic messages will be logged regarding
the dropped events. The default behaviour is to have
an unlimited event queue size.

Table 3.5. Model Manager Options

OPTION DESCRIPTION

-omodel_mgr,plugin_path=/temp Sets the plugin path to the specified directory (/
temp in this example). This setting overrides the
SB_PLUGINS environment variable setting.

-omodel_mgr,fps=25 Limits the frame rate for all animations to a
maximum fps specified (25 in this example).

-omodel_mgr,mem_stats=1 On platforms where process/task memory usage or
heap allocator memory usage values are available,
report them as performance log metrics. The value
should be set to 1 to enable the statistics, future
values are reserved.

Table 3.6. Render Manager Options: Windows, win32, OpenGL ES 2.0, x86

OPTION DESCRIPTION

-orender_mgr,x=[xpos] This will position the application at the defined x-
position

-orender_mgr,y=[ypos] This will position the application at the defined y-
position

Table 3.7. Render Manager Options: Linux, sdl, x86

OPTION DESCRIPTION

-orender_mgr,quality=[0|1|2] Quality of image rotation. The default, 0 is fastest
but lowest quality rendering. A setting of 2 is highest
quality but slowest performing.

Storyboard Engine

108

Table 3.8. Render Manager Options: Linux, fbdev, x86, armle

OPTION DESCRIPTION

-orender_mgr,dblbuffer Enable double buffering (fullscreen redraws)

-orender_mgr,fb=[device path] The path to the framebuffer device to use (default=/
dev/fb0)

-orender_mgr,fullscreen Run in fullscreen mode

-orender_mgr,quality=[0|1|2] Quality of image rotation. The default, 0 is fastest
but lowest quality rendering. A setting of 2 is highest
quality but slowest performing.

Table 3.9. Render Manager Options: Linux, directfb, x86, armle

OPTION DESCRIPTION

-orender_mgr,dumpconfig Dump the layer and graphics configuration
information at startup

-orender_mgr,double Enable double buffering (fullscreen redraws)

-orender_mgr,layer=[index] Set the directfb layer index that content will render
to (default=0)

-orender_mgr,quality=[0|1|2] Quality of image rotation. The default, 0 is fastest
but lowest quality rendering. A setting of 2 is highest
quality but slowest performing.

Table 3.10. Render Manager Options: Linux, Windows CE, Windows Compact 7,
Mac OSX, Neutrino 6.5, OpenGL ES 2.0, armle (Beagleboard)

OPTION DESCRIPTION

-orender_mgr,quality=[0|1|2] Set the rendering quality including shade model
and texture filter, and image rotation quality. A
value of 0=nearest/flat, 1=linear/flat, 2=nearest/
smooth (default=linear/flat). For image rotation,
lower numbers mean faster algorithms, but better
quality

-orender_mgr,fullscreen Run in fullscreen mode

-orender_mgr,multisample=[value] This sets value indicates the degree of
multisampling which affects the visual smoothness
of edges. For example, 4 would be 4x multisampling
while 0 would be no multisampling. The default
value is 4.

-orender_mgr,vbo use vertex buffer objects

-orender_mgr,scale=[aspect] scale the application to the physical display size. If
aspect is passed the application will retain the proper
aspect ratio when scaled.

-orender_mgr,backbuffer Render the scene using a damage rectangle. On
some OpenGL ES implementations this will give
better performance but will use more memory as it
has to allocate a separate display buffer.

Storyboard Engine

109

OPTION DESCRIPTION

-orender_mgr,npot Disable power-of-two texture allocations. By
default the OpenGL ES API is queried to check for
NPOT texture support. This option can be used to
override this behaviour and force support. NPOT
textures will use less memory for image data.

-orender_mgr,fontsize=[size] Specify the size of the font texture sheet. Fonts
are generated into sheets and the default size is
512x512. The number of glyphs put into the sheet is
a function of the point size and the texture size. This
option can be used to tune the number of available
glyphs and the memory usage.

-orender_mgr,window_w=[w] Scale the application content and window to the
specified width. This option is only valid on desktop
systems which use a window manager (MACOS
and Windows). This option must be used along with
'window_h'

-orender_mgr,window_h=[h] Scale the application content and window to the
specified height. This option is only valid on
desktop systems which use a window manager
(MACOS and Windows). This option must be used
along with 'window_w'

-orender_mgr,linejoin=[0|1] Set line join style for path drawing, drawing joins
can have a performance impact on frame rate.
0=none, 1=round (default=1)

-orender_mgr,clipmode=[stencil|scissor] Set the clipping mode to use, may have performance
impacts. Each implementation defaults to the best
performance.

-orender_mgr,error_event An error event is generated for OpenGL render
errors. Image and font errors will identify the image
and font related to the error.

-orender_mgr,display=[index] Connect to the given display index, this option is
only available for the QNX Screen OpenGL ES 2.0
render manager or the Linux i.MX6 OpenGL ES
2.0 render manager where the value is the selected
framebuffer index.

-orender_mgr,fb=[x] This option pertains specifically to iMX6 hardware
platforms. Starting at 0, x defines the framebuffer
number to render to.

-orender_mgr,x=[xpos] When using the QNX Screen engine this will
position the application at the defined x-position

-orender_mgr,y=[ypos] When using the QNX Screen engine this will
position the application at the defined y-position.

-orender_mgr,rotated=[90|180|270] Rotate the application by the defined angle.

-orender_mgr,zorder=[z] When using the QNX Screen engine this will
position the application window at the defined Z
index.

Storyboard Engine

110

Table 3.11. Render Manager Options: QNX Neutrino 6.5, Linux, Fujitsu Jade,
armle

OPTION DESCRIPTION

-orender_mgr,mainlayer=[number] The main layer to use for rendering, defaults to layer
0

-orender_mgr,display=[number] The display to connect to, defaults to display 0

-orender_mgr,conf_file=[path] A path to a LCD configuration file which includes
the display settings

Table 3.12. Render Manager Options: WinCE 6.0, Windows Compact 7, win32,
armle

OPTION DESCRIPTION

-orender_mgr,quality=[0|1|2] quality of image rotation. 0 is fastest but lowest
quality. 2 highest and slowest

-orender_mgr,fullscreen Removes the window border and fills the display
outside of the application area

-orender_mgr,dumpcaps Print the device capabilities and acceleration flags

-orender_mgr,nohwcursor disables the HW cursor

Table 3.13. Resource Manager Options

OPTION DESCRIPTION

-oresource_mgr,image=4 will set the image cache limit to 4K for example (the
texture memory on GPU based systems is related to
the image cache limit as well)

-oresource_mgr,font=4 will set the font cache limit to 4K for example

-oresource_mgr,error=0 send or skip resource manager error events, default
is 1 (send)

Table 3.14. Screen Manager Options

OPTION DESCRIPTION

-oscreen_mgr,swcursor enables the rendering of a software cursor

-oscreen_mgr,redraw_complete generate a completed event for every screen update

-oscreen_mgr,dl=1 disable the use of a particular hardware layer

-oscreen_mgr,fps display the frames per second of the display update,
requires level 4 verbosity (-vvvv)

-oscreen_mgr,overlay Allow the application to be run as an overlay and
show the content below. This only functions on
particular render managers and if the application has
a transparent background.

Storyboard Engine

111

Plugins
The Storyboard product ships with a standard set of plugins which add functionality to the system. Plugins
are loaded based on the SB_PLUGINS environment variable. This variable can be a directory where all
plugins are loaded from or a “;” separated list of plugins.

Some plugins have options that can be passed via the command line to the plugin. To pass on option to a
plugin use the -o option to sbengine in this format -o[PLUGIN_NAME],[PLUGIN OPTION]

Table 3.15. 3D model rendering: libgre-plugin-model3d.so

OPTION DESCRIPTION

-omodel3d,novbo Disable the use of vertex buffer objects, by default
Vertex buffer objects are used for rendering.

Table 3.16. Capture/Playback: libgre-plugin-capture-playback.so

OPTION DESCRIPTION

-ocapture_playback,mode=[capture|playback] Specifies the behaviour of the plugin for either
playback or capture. If capture is specified then
input events (gre.press, gre.release, gre.motion,
gre.keypress etc) will be logged and stored in an
ouptut file.

If playback is specified then the contents of an input
file are read and the input events are injected back
into the application.

-ocapture_playback,file=filename If "capture" is specified as the mode it indicates
the contents of the file specified will be overwritten
with the new event stream.

If "playback" is specified then the contents of the
file specified will be used as an event stream source.

-ocapture_playback,verbosity Indicates that the plugin should log events that it
is either capturing or playing back to the standard
output

-ocapture_playback,loop=count Playback option that indicates how many times the
playback should iterate through its content. The
default is to playback the content once, otherwise if
a count is specified the plugin will replay the full
content count times.

-ocapture_playback,quit_playback Playback option that indicates if a gre.quit event
should be automatically generated after playback is
complete. The default is to not generate a quit event.

Table 3.17. Gesture: libgre-plugin-gesture.so

OPTION DESCRIPTION

-ogesture,file=filename filename is a text file containing custom gesture
definitions.

Storyboard Engine

112

OPTION DESCRIPTION

-ogesture,mode=[single|multi] single allows for single touch gestures. multi allows
for both single and multi-touch gestures. By default
both single and multi touch gestures are disabled

-ogesture,threshold=[level] Specifying a level allows the user to configure the
sensitivity level which determines if we translate a
motion into a gesture event. By default the threshold
is set to 100.

See below for more options

Table 3.18. Linux Input Support: libgre-plugin-dev-input.so

OPTION DESCRIPTION

-odev-input,mouse=/dev/input/event0 The name of the mouse device, for example /dev/
input/event0

-odev-input,kbd=/dev/input/event1 The name of the keyboard device, for example /
dev/input/event1

One of either the mouse or kbd arguments must
be passed to enable this plugin. There are no default
bindings so the full path to the desired input device
must be specified.

Table 3.19. Lua Scripting: libgre-plugin-lua.so

OPTION DESCRIPTION

-olua,hold=[0|1] This option controls how Lua posts data manager
change notifications. By default all changes are
held until the end of script execution (1) but
if 0 is specified, change notifications and events
are triggered as soon as changes are made using
gre.set_data calls.

-olua,gc=[0|1] This option is used to minimize the runtime memory
footprint of the Lua script engine by invoking the
Lua garbage collector after every Lua action. By
default this option is set to 0 indicating that garbage
collection will occur at the natural points specified
by Lua's collectgarbage option. If the value
is set to 1, then garbage collection is run after
every Storyboard Lua action invocation, reducing
the active runtime memory footprint with a slight
cost to execution performance.

Table 3.20. Linux Multi-touch Protocol: libgre-plugin-mtdev.so

OPTION DESCRIPTION

-omtdev,device=[path to touch device] Plugin for Linux Multitouch Protocol to be used
with kernels supporting multitouch events. This
plugin is only available for the imx6 runtime
currently.

Storyboard Engine

113

OPTION DESCRIPTION

-omtdev,rotation=[0|90|180|270] Clockwise rotation of the touch input coordinates.
When X1,Y1 is in the top-left corner, rotation is 0.

-omtdev,bounds=[X1:Y1:X2:Y2] Where X1,Y1 is the top-left corner and X2,Y2 is the
bottom-right corner of the touch screen device. On
some screens, X1 may be less than X2 and Y1 may
be less than Y2.

-omtdev,max_x=[max touch value in the x
direction]

DEPRECATED in Storyboard 4.2

-omtdev,max_y=[max touch value in the y
direction]

DEPRECATED in Storyboard 4.2

-omtdev,threshold=[integer] This is the number of pixels a touch point has to
move in order to generate a motion event, the default
value is 1

-omtdev,points=[integer] This is the number of multitouch fingers that is
supported. Events will only be generated for this
number of fingers in contact with the screen, the
default is 5

Table 3.21. Linux Touchscreen Support: libgre-plugin-tslib.so

OPTION DESCRIPTION

-otslib,pressure=1 Set the pressure value with corresponds to a press,
the default is any value greater than 0 is a press.

-otslib,motion=5 The number of consecutive motion events to
compress, can be useful on a device which delivers
a high rate of motion events, default is to not
compress.

-otslib,calibrate Put tslib into raw mode which is used for calibration.

If you do not have the following tslib variables
setup the plugin will not load or function properly.

TSLIB_CONSOLEDEVICE
TSLIB_TSDEVICE
TSLIB_CALIBFILE
TSLIB_CONFFILE

Table 3.22. Logger: libgre-plugin-logger.so

OPTION DESCRIPTION

-ologger,output=[filename] This option specifies a path in the file system
to direct the Storyboard standard output to. The
directory path to the file must already exist.

+ At the beginning of the file name will append to
the log file, otherwise the file will be overridden on
each invocation of sbengine.
%D in the filename will be replaced by a date stamp
with YYYY-MM-DD format.

Storyboard Engine

114

OPTION DESCRIPTION

%T in the filename will be replaced by a 24h time
stamp with HHMMSS format.
Both %D and %T may be used on the same filename.

A valid command would be: -
ologger,output=/logs/log-%D-
%T.txt, provided the /logs/ directory existed prior
to runtime.

-ologger,buffer=[bytes] This option will buffer all logging output to an
allocated in-memory buffer and only flush the
output when the buffer content is full. The number
of bytes allocated for the buffer are provided by the
option to the argument. If the buffer size is 0 or
invalid, then 4K will be allocated for the buffer.

-ologger,event=[event_name] This option will enable the generation of a custom
Storyboard event any time that an ERROR message
is detected by the Storyboard Engine logging
system. When the error is detected, an event
"event_name" will be sent to the application and it
will contain a payload of "1s0 msg" where the "msg"
is the diagnostic string that would have been logged.

-ologger,slogger=[opcode]

(QNX ONLY)

This option specifies that sbengine should use the
QNX system logging infrastructure. if no opcode is
given, sbengine will provide an appropriate opcode.

The opcode is a combination of a major
and minor code. Create the opcode using the
_SLOG_SETCODE(major, minor) macro that's
defined in sys/slog.h.

This option is only available for systems running
QNX.

-ologger,io=[level] This option enables the logging of IO events in
variable levels of verbosity. If no option is specified
then the level will default to 1 and the event
name and its size in bytes will be displayed. If
2 is specified then the format is displayed. If 3
is specified then the data payload will be dumped
to the standard output in both hexadecimal and
character formats.

-ologger,data This option enables the logging of data change
events as they occur. The data key that has been
changed is displayed to standard output.

-ologger,perf This option enables the logging of performance
data to the standard output (or file if perf_file
is used). If a value of 0 is specified to the perf
option then performance logging is enabled, but the
capture of data is not immediately started and can
be toggled using the gra.perf_state action.
If the value is set to 1 or is not specified, then

Storyboard Engine

115

OPTION DESCRIPTION

performance data will be immediately captured. For
example sbengine -ologger,perf=1 will
enable performance logging with the immediate
capture of performance metrics.

-ologger,perf_file=[filename] This option specifies a path in the file system to
direct the performance data output to. The directory
path to the file must already exist and the contents
of the file will be overwritten on each invocation of
sbengine.

-ologger,filter=[keyword] This option enabled filtering of events based
on the keyword provided. Multiple keywords
can be specified up to a maximum of 5. Each
keyword can also be negated by the '^' symbol.
Therefor we could ignore all motion events by
passing in the following command: sbengine
-ologger,filter=^motion Filtering applies
to the 'io' and 'data' options.

If performance logging is enabled then the output
is a set of comma separated values (CSV) with
the following fields: PERF, application time, type,
operation, name, duration

application time This is the time that the performance event was
finished relative to the start time of the application
in milliseconds.

type This is the type of performance operation that was
recorded as a broad classifier

operation This is a sub-classification of the type used for
additional tracing granularity

name This is an identifier that can be used, along with the
type and operation fields, to identify the context of
the performance operation being performed

duration This is the duration of the operation in milliseconds

Table 3.23. QNX input support: libgre-plugin-gfi-input.so

OPTION DESCRIPTION

-ogfi-input,mouse=/dev/devi/mouse0 The name of the mouse device, for example /dev/
devi/mouse0

-ogfi-input,rotated=[90|270] If specified, this indicates that the input co-ordinates
should be rotated by 90 or 270 degrees

By default the input system used the gfi interface
based on the devi drivers. The devi driver must be
run with the -P option. If you pass the mouse
option then the mouse/touchscreen is used in raw
mode.

Storyboard Engine

116

Table 3.24. Storyboard IO: libgre-plugin-greio.so

OPTION DESCRIPTION

-ogreio,channel=name The value specifies the name that the applicaitons
Storyboard IO channel will use. This name can then
be used by gre_io_open or iogen clients to
send events to the application.

-ogreio,queue This flag indicates if the events on the Storyboard
IO channel should be asynchronously queued into
the application's message queue or if a new event
should be added only after the last event has been
processed. The default is to only have one event
being processed by the application at a time.

Gesture

Capture mouse or touchscreen events and generate gesture events

Name: gesture

Plugin: libgre-plugin-gesture.so

Options: file=filename

mode=[single|multi]

threshold=[level]

File is the filename of a text file containing custom gesture definitions.

Mode specifies if we are anticipating single or multi-touch events.

Threshold is the sensitivity level which determines if we translate a motion into a gesture event.

What the gesture plugin does is to translates input gre.move events from a mouse or a touchscreen into
a gesture event. When a button is depressed, or your finger is dragged across the touchscreen, the gesture
plugin tracks it. When the button is release or you take your finger off of the touchscreen, the plugin emits
the gesture.

The gesture plugin also handles input from multiple touch points when running on a multi-touch enabled
device.

The conventional gestures below are only generated from the mouse or a single touch point. Using Multiple
Touch points will generate other events described later in this document.

Gestures are made up of a series of numbers. The numbers represent the direction that the cursor was
traveling as a grid arranged from 1 to 8:

1 Up

2 Up and to the Right

3 Right

4 Down and to the Right

5 Down

Storyboard Engine

117

6 Down and to the Left

7 Left

8 Up and to the Left

By default the gesture plugin registers the Up, Right, Down, and Left gestures as 1, 3, 5, 7. The numbers
2, 4, 6, 8 aren't enabled by default, but you can define them in a custom gesture definition file. The gesture
definition file is a text file that defines an event, followed by the gesture number.

For example, to define a z gesture, you could put the following in the a gesture-definition.txt
file:

gre.gesture.ze,363

This definition stats when the gesture plugin detects a right motion, followed by a down and to the left
motion, followed by another right motion, it will emit a gre.gesture.ze event.

You can point the gesture plugin at the custom gesture definition file by running storyboard with the option
"gesture,file=filename" , where filename would be the name of the file like, gesture-definition.txt, from
the example above. Another option is to export the environment variable GESTURE_DEF_FILE which
will set to the path to the custom definition file.

It should be noted that gestures are capped at a maximum of 30 motions and anything above this limit will
cause a warning and be ignored.

Multi-Touch Gestures

Unlike the single touch gestures, which state which gesture you have just entered, the multi-touch gestures
are events that fire whenever you have more than one finger on the touchscreen. The plugin tracks up to
five contact points, if 6 or more are present they will simply be ignored by the plugin. The events the plugin
listens to are gre.press, gre.release, and gre.motion to track the touchscreen info while only one finger
is present and gre.mtpress, gre.mtrelease, and gre.mtmotion, to track the touchscreen info while multiple
touches are present. Note when using a multi-touch enabled device single the press, release and motion
events will be sent only while there is only one touch point present. As soon as there are multiple touch
points present, all events will be mt events.

After listening to the events, if more than one touch point is present and one or more touch points move,
the plugin will do an update where it compares the old touch locations to the updated touch locations and
generates the related multi-touch gesture events. These events are all of the form gre.mtXaction, where X
is the number of touch points present (between 2 and 5), and action is the name of the event, which will
be one of, move, pinch or rotate.

All multi-touch gesture events have the same format of a gre pointer event, with a few extra data fields.

gre.mtXmove

This event has an x_move and y_move data field, which will be the difference in x and y of the midpoint
of all present touch touches between the current and last event sent from the touchscreen.

gre.mtXpinch

This event has a value data field, which will be the scale factor of the average spacing from all current touch
points compared to the spacing of all the old touch points. The scale factor is calculated by newspacing/
oldspacing, so a value of 1.1 indicates a growth of 10% and a value of 0.9 indicates a shrink of 10%

Storyboard Engine

118

gre.mtXrotate

This event has a value data field, which will be the difference in rotation between the average angle of
all current touch points compared to the average angle of all the previous touch points. The value will
be in degrees.

Custom Shader Support
Storyboard supports custom OpenGL ES shaders written in GLSL. Shader programs can be attached to
controls by creating a vertex and fragment shader program. These programs are then compiled at runtime
and used by the Storyboard Engine. When creating a shader the uniforms can be manipulated in Storyboard
Designer through variables. The naming of the shader uniform determines how it's variable is resolved.
All shader variables must be float type variables. The uniform naming can be prefixed in order to tell
Storyboard which context to resolve the variable:

grd_a: This variable is resolved at the application level
grd_l: This variable is resolved at the Layer level (layer where the
control is)
grd_g: This variable is resolved at the Group level (group where the
control is)
grd_c: This variable is resolved at the control level (control where
the shader is connected). This is the default if no prefix is used

Fragment shader Example:

All variables can be created at the application level. The variables would be:

r: float
g: float
b: float
a: float

The program would be:

uniform float grd_a_r;
uniform float grd_a_g;
uniform float grd_a_b;
uniform float grd_a_a;

void main (void)
{
 gl_FragColor = vec4(grd_a_r, grd_a_g, grd_a_b, grd_a_a);
}

Vertex shader Example:

attribute vec4 myVertex;
attribute vec4 myUV;

varying vec2 myTexCoord;

uniform mat4 projMatrix;
uniform mat4 mvMatrix;

Storyboard Engine

119

void main(void)
{
 gl_Position = projMatrix * mvMatrix * myVertex;
 myTexCoord = myUV.st;
}

Font Environment Variable
sbengine has environment variables for font options:

SB_FONT_HINT="normal"

This corresponds to the default hinting algorithm, optimized for standard gray-level rendering.

SB_FONT_HINT="light"

A lighter hinting algorithm for non-monochrome modes. Many generated glyphs are more fuzzy but better
resemble its original shape. A bit like rendering on Mac OS X.

SB_FONT_CACHE_SIZE=[size]

This variable is used to set the size ofthe Freetype font face cache. By default the cache is disabled and a
value of 0 will disable the cache. any other number is the number of font faces to cache, using this cache
can decrease memory mappings of font files.

System Specific Requirements
Certain operating system or rendering platforms require additional configuration parameters or extra
environment variables. The following is a list of platform notes for setting up Storyboard Engine.

The most recent target configuration information is available in the online support forums for Storyboard
Engine at www.cranksoftware.com/forums.

Linux FBDEV x86, armle

Requirements:

This build renders directly to the Linux framebuffer device (/dev/fb0). No other Graphical User Interface
should be running when Storyboard is started as it assumes control of the framebuffer device. This build
also uses the Freetype library for font loading and rendering.

For the ARM version a plugin is available which supports a touchscreen device through the use of tslib
(libgre-plugin-tslib.so). This plugin will use the standard tslib environment variables in order to find and
configure the touch device as follows:

export TSLIB_CONSOLEDEVICE=none
export TSLIB_TSDEVICE=/dev/input/ts0
export TSLIB_CALIBFILE=/etc/pointercal
export TSLIB_CONFFILE=/etc/ts.conf

It is assumed that the touch device has been configured previously. In order to configure the touch device
please run the ts_calibrate which is part of the tslib distribution or build for Linux systems.

www.cranksoftware.com/forums

Storyboard Engine

120

If your application uses the Storyboard IO library then the Linux kernel must have SysV message queue
support.

Libraries:

• libfreetype.so

• libts.so (only for tslib plugin)

Note

Storyboard requires a libts-0.0.so.0 to be in the lib path to use the tslib-plugin. If the board has
libts-1.0.so.0 simply create a symlink for libts-0.0.so.0 and point it at the libts-1.0.so.0.

ln -s /lib/libts-1.0.so.0 /lib/libts-0.0.so.0

Microsoft WinCE, Compact7 win32, armle

Requirements:

Alpha blending must be compiled in to the target WinCE image

To utilize the -v verbosity options, a console must be compiled in to the target WinCE image

Use command line option to pass SB_PLUGINS directory since WinCE does not support environment
variables. Eg: sbengine -omodel_mgr,plugin_path="/Temp"

liblua.dll must reside in the same directory as sbengine.exe, due to the lack of a PATH environment variable

Libraries:

• libgwes.dll Must be built into target WinCE image

Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle
Using the Yocto Jethro linux kernel (3.14) with the boundary devices branch for the nitrogen6x you might
encounter flickering graphics.

Requirements:

echo 10 >/sys/devices/soc0/backlight_lvds0.17/backlight/backlight_lvds0.17/brightness

121

Chapter 4. Storyboard Media
Introduction

The Storyboard runtime engine provides a media plugin interface in order to support the playback of several
different types of audio and video formats. The media plugin accomplishes this by communicating with
an external media player back-end application. Media back-end applications are provided for particular
platforms based on their underlying media support. Video playback can be accomplished by either using
the Storyboard External render extension in order to overlay the video content within Storyboard or by
controlling an external display layer as hardware permits.

Video and Audio playback is accomplished by using a set of defined actions. When creating a media
application you must include these media actions in your Storyboard project. The action definition file can
be found in your Storyboard Installation under:

Samples/action_definitions/media.sbat

Copy this file to the “templates” directory of your project in order to expose the actions.

A sample video application can be found in the Storyboard online repository in order to demonstrate the
actions provided.

Media Actions
The following actions can be used to control the media playback. Note that all actions take a
“channel_name” argument. This is used to target a specific playback channel. For example if a video is
started with “gra.media.new.video” with “channel_name=video1” then any subsequent action which wants
to act on this video, such as play/pause, must set the channel “video1”.

gra.media.new.audio
Tells the plugin to play a new audio file.

The action arguments are:

channel_name The channel name the new video is to be played on

media_name The name of the media to play, full path to an audio file

volume The initial volume value to play the media at. The value should be between 0
and 100.

update_interval The number of milliseconds to wait in between update messages

emit_time_events A value that is set to 1 to emit time update events, 0 otherwise

extra_data Any extra data that should be passed to the back-end, can be NULL

gra.media.new.video
Tells the plugin to play a new video file.

The action arguments are:

Storyboard Media

122

channel_name The channel name the new video is to be played on

media_name The name of the media to play, full path to a video file

volume The initial volume that the media should be played at

object_name The name of the external object to display content on. This is necessary when
using an external render extension to display the content, please refer to the
external render extension documentation

external_name The name of the render extension to display content on. This is necessary when
using an external render extension to display the content, please refer to the
external render extension documentation

update_interval The number of milliseconds to wait in between update messages

emit_time_events A value that is set to 1 to emit time update events, 0 otherwise

output_width The width of the video

output_height The height of the video

output_depth The output depth of the video in bytes per pixel. 16bit = 2, 24bit = 3, 32bit = 4

extra_data Any extra data that should be passed to the back-end, can be NULL. See each
backend for a description of this data

gra.media.volume
Triggers a change in the playback volume.

The action arguments are:

channel_name The channel name to change the volume on

volume The value to change the volume to, a number between 0 and 100

emit_volume_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.seek
Triggers a change to the current playback position of the media that is playing.

The action arguments are:

channel_name The channel name to change the seek position on

seek_num The new seek position for the media file

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.stop
Changes the media playback state to stopped.

The action arguments are:

Storyboard Media

123

channel_name The channel name to change the state on

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

gra.media.playpause
Changes the media playback state from paused to playing or from playing to paused

The action arguments are:

channel_name The channel name to change the state on

emit_state_event A value that is set to 1 if an event should be emitted or 0 otherwise

Media Events
A value that is set to 1 if an event should be emitted or 0 otherwise

gre.media.exit
The media back-end applcation has exited.

Data:

No data payload

gre.media.timeupdate
Emitted when the time has been updated.

Data: "4u1 time_elapsed 4u1 total_time 1s0 channel_name"

unsigned time_elapsed
unsigned total_time
char channel_name[MAX_CHANNEL_NAME_LEN + 1]

Where:

time_elapsed The time that has elapsed during play back

total_time The total time for play back

channel_name The name of the channel that this time event occurred on

gre.media.statechange
Emitted when the player has changed state, between a paused and playing state.

Data: "1s33 channel_name 1s0 state"

char channel_name[MAX_CHANNEL_NAME_LEN + 1]

Storyboard Media

124

char state[1]

Where:

channel_name The name of the channel that is changing state

state The new state: “paused” | “playing”

gre.media.complete
Triggered when the named media has played to the end and stopped playing

Data: "1s33 channel 1s0 name"

 char channel_name[MAX_CHANNEL_NAME_LEN + 1]
 char media_name[1]

Where:

channel_name The name of the channel that has completed playback

media_name The name of the media stream that completed playback

gre.media.error
Triggered when there was an error playing the media source.

Data: "1s33 channel_name 1s0 error_msg"

char channel_name[MAX_CHANNEL_NAME_LEN + 1]
char error_msg[1]

Where:

channel_name The name of the channel that received an error

error_msg[1] The error message

Media backends
The media backend application does the work of playing and controlling the media based on
requests from the Storyboard application over a Storyboard IO channel. The default Storyboard IO
channel name is com.crank.media_backend. This value can be overwritten by setting the
SBMEDIA_CHANNEL_NAME environment variable to a new value. Currently the only supported media
backend is based on gstreamer.

gstreamer-backend
This media backend uses the gstreamer framework to play and control audio and video files. In order to use
this backend the platform must have gstreamer and the required plugins installed. It is a good idea to try

Storyboard Media

125

and play content with the “gst-launch” application to ensure a proper installation before running gstreamer-
backend. This backend also uses Storyboard IO for communication with the Storyboard application so
please ensure Storyboard IO is functional and the application has the “greio” plugin loaded.

Options:

-e : Render the video content with an external buffer

-p pipeline: Use the defined gstreamer pipeline to play the media

-v: increase verbosity, debug output

Action data The “new.audio” and “new.video” actions take an extra_data argument. This argument
is a string which can contain the following options which must be separated by a “;”.

Gstreamer pipeline
You can specify the gstreamer pipeline used to play the particular media by either passing it on the
command line to gstreamer-backend with the “-p” option or by passing it to the actions. The pipeline can
be passed in as:

“pipeline:[your pipeline]”

This pipeline can be similar to the one used with the “gst-launch” application with a few minor
modifications. In order to allow the changing of the media file the first part of the pipeline must contain
a named filesrc element as follows:

“pipeline:filesrc location=video.mov name=media-src”

Doing this will allow the code to find the named element and replace the location with a new video file.

External render extensions
If the content is to be rendered with an external render extension then you can pass the “-e” option or add
an option to the extra_data argument as follows:

“use_external”

126

Chapter 5. Event Definitions
Standard Event Definitions

Storyboard supports a list of standard events. These events are all prefixed with gre. and can be used
by your application.

System Events

gre.init

The system has been initialized and is ready. This is the first event set in the system.

Data:

 No data payload

gre.quit

The system is being shutdown.

Data:

 No data payload

gre.redraw

An area of the screen has been damaged (visible data has changed). A redraw event may not cause actual
screen drawing if the control which has changed is hidden or offscreen.

Data:

int32_t x
int32_t y
int32_t width
int32_t height

If the values are all 0 then the entire screen has been damaged

Pointer Events
The following events are generated in response to a device such as a mouse or a touchscreen. These events
are targeted at specific controls based upon the controls location and sensitivity.

gre.press

A mouse/touchscreen has been pressed.

Data

Event Definitions

127

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.release

A mouse/touchscreen has been released.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

Event Definitions

128

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.touch

If a mouse/touchscreen presses and then releases on the same control then a touch event will be generated.
 This is useful for activating button style elements. If the release is found to intersect a different control
then a touch event is not generated.

Note

This event is synthetically generated by the framework based on incoming gre.press and
gre.release events. Event redirectors should generally not include this event in their list of
redirection events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtpress

A touchscreen has been pressed. This event is emitted where are two or more contact points.

Data

uint32_t button
uint32_t timestamp
int16_t subtype

Event Definitions

129

int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.mtrelease

A touchscreen has been released. This event is emitted when there are two or more contact points.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

Event Definitions

130

gre.inbound

A mouse/touchscreen has entered a control (if dragging a pointer or finger). This event is generated once
the coordinates enter a control boundary. If mouse motion events are disabled in the render manager then
this event will not be generated.

Note

Control groups can not receive inbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype
int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

gre.outbound

A mouse/touchscreen has left a control (if dragging a pointer or finger). This event is generated once the
coordinates leave a control boundary. If mouse motion events are disabled in the render manager then
this event will not be generated.

Note

Control groups can not receive outbound events.

Data

uint32_t button
uint32_t timestamp
int16_t subtype

Event Definitions

131

int16_t x
int16_t y
int16_t z
int16_t id
int16_t spare

Where:

button GR_EVENT_BTN_LEFT - 0x0001: if this is a touchscreen then the button is always left
GR_EVENT_BTN_MIDDLE - 0x0002
GR_EVENT_BTN_RIGHT - 0x0004

timestamp This is an event timestamp in milliseconds since application start

subtype GR_EVENT_RELEASE_IN
GR_EVENT_RELEASE_OUT

z This parameter is dependent on the availability of z- co-ordinate information

id This parameter is used to track multi-touch presses as they come in

spare This is padding and should be 0

Keyboard Events
The following events are generated if a keyboard is present and supported by the render manager.

gre.keydown

A key is in the pressed state

Data

uint32_t code
uint32_t modifiers

Where:

code This is the UTF-8 key value

modifiers A set of modifiers applied to the key

GR_EVENT_KEYMOD_ALT
GR_EVENT_KEYMOD_CTRL
GR_EVENT_KEYMOD_SHIFT

gre.keyup

A key which was previously pressed has been released

Data

Event Definitions

132

uint32_t code
uint32_t modifiers

Where:

code This is the UTF-8 key value

modifiers A set of modifiers applied to the key

GR_EVENT_KEYMOD_ALT
GR_EVENT_KEYMOD_CTRL
GR_EVENT_KEYMOD_SHIFT

Screen Manager Events
The following events are generated by the Screen Manager during screen transitions. These events are
generated in the following order:

gre.screenshow.pre delivered to target (end) screen
gre.screenhide.pre delivered to source (start) screen
gre.screenshow.post delivered to target (end) screen
gre.screenhide.post delivered to source (start) screen

gre.screenshow.pre

A screen is being shown. This event is triggered before the screen is shown and signifies that a transition
may be starting

Data:

char *name The name of the screen which is being shown

gre.screenshow.post

A screen has been shown. This event is triggered after the screen is shown and signifies that a transition
has ended.

Data:

char *name The name of the screen which has been shown

gre.screenhide.pre

A screen is being hidden. This event is triggered before the screen is hidden and signifies that a transition
may be starting.

Data:

char *name The name of the screen which is being hidden

gre.screenhide.post

A screen has been hidden. This event is triggered after the screen is hidden and signifies that a transition
has ended.

Event Definitions

133

Data:

char *name The name of the screen which has been hidden

Focus Events
The following events are generated on a change of control focus. If there is no focusable control on the
current screen then these events will not be generated. These events are targeted at the currently or last
focused control. When focus shifts from one control to another the lost focus event is sent first followed
by the got focus event.

gre.gotfocus

A control has received focus, delivered to the control that received the focus.

No data payload.

gre.lostfocus

A control has lost focus, delivered to the control that has lost the focus.

No data payload.

Table Events
The following events are generated by a Table control. If no table control is present then these events
will not be generated.

gre.table.viewport

A table has been resized via the table resize action. This event notifies the system of the new table size
and visible area.

Data:

uint32_t top_row
uint32_t left_col
uint32_t bot_row;
uint32_t right_col;
char *table

Where:

top_row The top row that is visible

left_col The left column that is visible

bot_row The bottom row that is visible

right_col The right column that is visible

table The name of the table whose viewport changed to cause this event

Event Definitions

134

gre.cell.gotfocus

A table cell has received focus and is the currently active cell. This is delivered to the control template
with the cell focus information.

Data:

uint32_t row;
uint32_t col;
char *table

Where:

row The row that received focus

col The column that received focus

table The name of the table where the cell focus changed

gre.cell.lostfocus

A table cell has lost focus and is no longer the active cell. This is delivered to the control template with
the cell focus information

Data:

uint32_t row;
uint32_t col;
char *table

Where:

row The row that received focus

col The column that received focus

table The name of the table where the cell focus changed

Table Scroll Events
The following events are only generated when the "Enable list scrolling behaviour" option is checked in
the Table properties.

gre.table.drag_start

This event is generated when a user begins dragging a scrolling table.

Data:

 No data payload

Event Definitions

135

gre.table.drag_stop

This event is generated when a user stops dragging a scrolling table.

Data:

 No data payload

gre.table.scroll_start

This event is generated when the scroll animation begins.

Data:

 No data payload

gre.table.scroll_stop

This event is generated when the scroll animation completes.

Data:

 No data payload

gre.table.scroll_cancel

This event is generated when the scroll animation is interrupted.

Data:

 No data payload

Layer Scroll Events
The following events are only generated when the "Enable layer scrolling behaviour" option is checked
in the Layer Scrolling properties.

gre.drag.start

This event is generated when a user begins dragging a scrolling layer.

Data:

 The name of the object being scrolled

gre.drag.stop

This event is generated when a user stops dragging a scrolling layer.

Data:

 The name of the object being scrolled

gre.scroll.start

This event is generated when the scroll animation begins.

Event Definitions

136

Data:

 The name of the object being scrolled

gre.scroll.stop

This event is generated when the scroll animation completes.

Data:

 The name of the object being scrolled

gre.scroll.cancel

This event is generated when the scroll animation is interrupted.

Data:

 The name of the object being scrolled

Mobile Events (Android and iOS)
The following events are only generated when running on Android and iOS.

gre.mobile.on_pause

The application has become inactive. The application will not be rendering to the screen after this event
is received.

Data:

 No data payload

gre.mobile.on_resume

The application has become active. The application will be rendering to the screen after this event is
received.

Data:

 No data payload

gre.mobile.on_background

The application has lost focus.

Data:

 No data payload

Android Events
The following event is only generated when running on Android.

Event Definitions

137

android.onBack

The back button on the Android application has been pressed.

Data:

 No data payload

Windows Embedded Compact 2013 (WEC2013) Events
Limited gestures support has been added to the winevent plugin for the Windows Embedded Compact
2013 platform. This support has been added via the Storyboard Engine winevent plugin (libgre-plugin-
winevent.dll) and this plugin must be included in Storyboard Engine distribution.

The gesture support is designed to make visible the internal Windows gesture events and payloads that
are generated from the underlying system as described in this document: https://msdn.microsoft.com/en-
us/library/ee503599.aspx

As of the Storyboard 4.2 release, only the GID_PAN and GID_SCROLL sub-category of WM_GESTURE
gesture events are translated into corresponding Storyboard events. These events will only be generated
on WEC2013 hardware platforms where the BSP has been configured with gesture event support and the
touchscreen driver configured to enable such event generation.

In order to add application support for receiving these win.gesture events, the events must be added to the
Storyboard Designer application. The events can be added in the same manner as any other user defined
events are added at the point where they are used to trigger an action within the "New Action" dialog.

win.gesture.pinch

This event is generated in response to the Windows MW_GESTURE:GID_PAN event. The event data is
taken directly from the Windows event.

Data: (4s1 x 4s1 y 4s1 spread)

int32_t x
int32_t y
int32_t spread

win.gesture.[up|down|left|right|unknown]

This event is generated in response to the Windows MW_GESTURE:GID_SCROLL event. The event
data is taken directly from the Windows event.

Data: (4s1 velocity 4s1 angle)

int32_t velocity
int32_t angle

Plugin Specific Event Definitions
The following events are generated by optional Storyboard plugins.

https://msdn.microsoft.com/en-us/library/ee503599.aspx
https://msdn.microsoft.com/en-us/library/ee503599.aspx

Event Definitions

138

gre.gesture.up

Data:

char *gesture_num
int32_t time

gre.gesture.down

Data:

char *gesture_num
int32_t time

gre.gesture.left

Data:

char *gesture_num
int32_t time

gre.gesture.right

Data:

char *gesture_num
int32_t time

gre.screendump.complete

A screen dump action has completed.

timer.[name] Timer Events

Timer events are generated as a result of a timer action. See documentation on the gra.timer action
for further information about configuring timers.

The timer event name will be formatted as timer.[name] where name is the value set as the name
of the timer when the action was defined.

gre.animate.complete.[name] Animation Events
Animation events are generated as a result of an animation action. See documentation on the
gra.animation action for further information about configuring animations.

Event Definitions

139

When an animation is completed, an animation event will be fired. The event name will be formatted as
gre.animate.complete.[name] where name is the value set as the name of the animation when
the action was defined.

gre.rendermgr.error

This event will be generated when an error has occurred with a OpenGL ES 2.0 runtime using the
"error_event" option.

Format:

4s1 code 1s0 msg

code :The code is the error code that is returned from the GL framework on the API call glGetError()

msg :The msg is a human readable diagnostic message about the context of the error and any associated
resources involved. For example: problems loading font or image resource textures will identify the image
and font related to the error, other API calls will be identified by context of execution (ie GL function
name, shader compilation).

140

Chapter 6. Action Definitions
Built-in Action Definitions

Storyboard supports a number of standard actions which are built-in to the framework. These actions
are all prefixed with gra. and can be incorporated into your application design without any plugin
dependency.

gra.screen
Cause a screen transition to occur by replacing the current screen with the new one.

The action arguments are:

screen The name of the screen to transition to.

gra.screen.fade
Causes a screen transition to occur by fading the old screen into the new one.

The action arguments are:

screen The name of the screen to transition to.

rate Defines how the alpha value will change over the transition:

linear
easein
easeout
easeinout
bounce

fps The frames per second to use for the transition

duration The duration of the transition in milliseconds

gra.screen.hold
Hold all screen updates. While held a screen will not redraw.

gra.screen.release
Release a held screen. If a screen was damaged during the period of time that the screen was being held,
then a redraw action will be triggered.

gra.sendevent
Send an event to the application's input event queue. This action is equivalent to injecting an event via
Storyboard IO or using the Lua gre.send_event() API

The action arguments are:

event The name of the event to send

Action Definitions

141

gra.datachange
Change or create a variable value in the data manager.

The action arguments are key/value pairs such that the key is the fully qualified model path for the variable
and the value is the new value to assign to that variable. For more information on creating the model paths,
see the Data Variables section of this document.

gra.screen.focus.set
Set the focus to a specific control.

The action arguments are:

index The focus index to set the focus to.

control The name of a control to set the focus to.

Only one of either the index or the control need to be provided for this action. If both arguments are set,
then the index value will be used.

In order for this action to complete successfully, the control specified must be set as focusable. For more
information about making controls focusable and the focus operation in Storyboard, refer to the Focus
section in the Execution Pipeline part of this document.

gra.screen.focus.next
Move the current focus to the next focusable control.

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.screen.focus.prev
Move the current focus to the previous focusable control.

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.screen.focus.direction
Move the current focus to the next control in a direction.

Action Definitions

142

The action arguments are:

min The minimum focus index to move to or -1 to have no minimum value

max The maximum focus index to move to or -1 to have no maximum value

direction The direction to search for the next focusable control

up
down
left
right

In order for this action to complete successfully, there must be a control whose focus index lies between
the min and max values. For more information about making controls focusable and the focus operation
in Storyboard, refer to the Focus section in the Execution Pipeline part of this document.

gra.table.scroll
Scroll the content of one or more tables.

The action arguments are:

control The name of the table control to scroll. May be a comma separated list if multiple tables
are specified.

row The absolute 1 based row to start the scroll from. The default, 0, indicates that scrolling
should start from the current row

col The absolute 1 based column to start the scroll from. The default, 0, indicates that scrolling
should start from the current column

delta_row The number of rows to move. A positive value moves the table down a negative value
moves the table up

delta_col The number of columns to move. A positive value moves the table right a negative value
moves the table left

fps The frames per second rate at which to scroll the table.

duration The duration in milliseconds to run the scroll over.

gra.table.resize
Set the number of rows and columns for a table. This action does not resize the control, simply the number
of cells contained within the virtual table.

The action arguments are:

control The name of the table control to resize.

rows The number of rows for the table. Specifying 0 will leave the current number of rows
unchanged.

columns The number of columns for the table. Specifying 0 will leave the current number of columns
unchanged.

Action Definitions

143

When the table is resized, a gre.table.resize event will be emitted.

gra.table.navigate
Navigates the cells of a table, sets the active cell which in turn generates the cell focus events. If the new
active cell is not visible the table will be scrolled in order to show this cell.

The action arguments are:

control The name of the table control to scroll. May be a comma separated list if multiple tables
are specified.

fps The frames per second rate at which to scroll the table, 0 performs an immediate scroll.

duration The duration in milliseconds to run the scroll over, 0 scrolls it immediately.

direction The type of navigation to perform

set Sets the active row and column to what is specified in the row/col parameters.
The option only ensures that the cell is visible and does not guarantee the cell
will be at the top of the visible list.

next Move to the next cell, scroll by column then by row

prev Move to the previous cell, scroll by column then by row

up Move to the cell above the current one

down Move to the cell below the current one

left Move to the cell to the left of the current one

right Move to the cell to the right of the current one

home Move to the first cell in the table at row,column 1,1

end Move to the last cell in the table

row The row to navigate to. This is only used if direction is assigned set

col The column to navigate to. This is only used if direction is assigned set

gra.log
Use the GRE logging mechanism to output a message.

The action argument is the string message that should be output.

gra.resource.dump_def
Remove a resource which is managed by the resource manager.

The action arguments are:

pool The pool name containing the resource to dump

ref The name of the resource to dump

Action Definitions

144

The currently defined resource pools are image containing all of the images and font containing all of
the fonts associated with the Storyboard application.

gra.playback

This is the action definition for Designer. For more information on adding action definitions to Storyboard
Designer please refer to Section 2.6.6 User Defined Actions.

<actiontemplates>
 <template name="gra.playback">
 <arguments>
 <element name="filename" type="string" />
 <element name="loop" type="boolean" />
 <element name="quit" type="boolean" />
 <element name="verbose" type="boolean" />
 </arguments>
 </template>
</actiontemplates>

The action arguments are:

Filename The name of the file to capture the events

Loop True or false

Quit Send a quit message when finished

Verbose Set verbosity. More v’s means more verbose output

Plugin Action Definitions
The following actions are only available when optional Storyboard plugins has been loaded.

gra.lua
Cause a Lua script function to execute.

Plugin libgre-plugin-lua.so

Options: script The name of the Lua function to invoke

Additional arguments can be passed to the function by providing additional key/value pairs
to the action. The key/value pairs are provided to the Lua function as values in the argument
table.

For example to call the Lua function myfunction with an extra argument,
firstargument, that corresponds to the value of the application variable myvar you
would simply add a new entry to the parameter list.

The corresponding call to the Lua function would fill the entry into the argument table such
that:

Action Definitions

145

function myfunction(mapargs)
 print("The value is: " .. tostring(mapargs.firstargument))
end

would print out the value of ${app:myvar}.

gra.animate
Start an animation. Animations are started based on their name. Each animation can have an optional
identifier (id) which is used to ensure that animations run in an exclusive manner. If an existing animation
is running that uses the same identifier, then that animation is stopped before this animation is started. The
data argument is as follows:

Plugin libgre-plugin-animation.so

Options: name The animation name to start

id An optional instance id to be associated with the animation. Animation identifiers
can be used with different animations to ensure that only one animation of the set
is running at a time.

When the animation stops it will emit a notification event in the form of gre.animate.complete.
[name]. This event will be delivered within the context of the gra.animate action and will be delivered
to the object which invoked the action.

gra.animate.stop
Stop an animation. If you stop an animation only by name then all running animations with that name
will stop and emit a complete event. If you stop an anaimation by id then only that specific animation will
stop and emit a complete event. The data argument is as follows:

Plugin libgre-plugin-animation.so

Options: name The animation name to stop

id An optional instance id associated with the name

When the animation stops it will emit a notification event in the form of gre.animate.complete.
[name]

gra.audio
Start or stop the asynchronous playback of a WAV audio file. The data argument is as follows:

Plugin: libgre-plugin-audio.so

Options: filename A filename to play, or empty to stop the current playback.

gra.greio
Send a new event over a Storyboard IO channel.

Plugin: libgre-plugin-greio.so

Action Definitions

146

Options: name Storyboard IO channel name to send the event to (required)

event The name of the event to generate (required)

target The target of the event to generate (optional)

format The format of the event data (optional)

data The data payload for the event

gra.perf_state
Control the capture of performance data

Plugin: libgre-plugin-logger.so

Options: state Turn off (0) or on (1) performance data capture

In order for this action to be used, the libgre-plugin-logger.so must have been started with
performance logging enabled, but not necessarily to have it start capturing the performance data. For
example sbengine -ologger,perf=0 will enable performance logging but not start capturing
events at startup while sbengine -ologging,perf=1 will enable performance logging and
immediately start capturing events.

gra.redirect
Redirect all events to another Storyboard IO channel.

Plugin: libgre-plugin-redirect.so

Options: channel Storyboard IO channel name to send the events to

gra.screen.path
Causes a screen transition to occur by fading the old screen into the new one.

Plugin: libgre-plugin-screen-path.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right

Action Definitions

147

top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

moving The screen(s) to animate with the desired path transition.

both
new only
old only

gra.screen.scale
Causes a screen transition to occur by scaling the old screen into the new one.

Plugin: libgre-plugin-screen-scale.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.glswitch
Causes a screen transition to occur by using 3D to switch the old screen into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

Action Definitions

148

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.glrotate
Causes a screen transition to occur by using 3D to rotate the old screen in the x-axis into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.glflip
Causes a screen transition to occur by using 3D to switch the old screen into the new one.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein

Action Definitions

149

easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.gldoors
Causes a screen transition to occur by using 3D to switch the old screen into the new one using a door
opening animation.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.gltip
Causes a screen transition to occur by using 3D to switch the old screen into the new one by tipping the
display forward.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

Action Definitions

150

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

all
delta

gra.screen.glcube
Causes a screen transition to occur by using 3D to switch the old screen into the new one using a cube
animation.

Plugin: libgre-plugin-screen-3d.so

Options: screen The screen to transition to

rate Defines how the alpha values will change

linear
easein
easeout
easeinout
bounce

fps Number of frames per second

duration Length of the transition in milliseconds

direction The direction to transition from

left
right
top
bottom

layers The layers to transition, all of the layers or just the layers that are different
between source and destination.

Action Definitions

151

all
delta

gra.screendump
Dump the contents of the screen to an image file.

Plugin: libgre-plugin-screen-dump.so

Options: filename The filename of the image file to create. The directory path to the filename
must exist and the filename will be overwritten if it is. The filename must
end with either a .bmp extension to generate BMP formatted images or .tga
to generate TGA formatted images

gra.timer
Start, stop and control a timer.

Plugin: libgre-plugin-timer.so

Options: name The name to use to identify this timer (required)

rtime The time delay in milliseconds relative to the action invocation. Specify a value
of 0 to stop an existing timer.

repeat The number of milliseconds to delay after the timer first fires, used to provide
a stable repeat timer. Specify 0 for a one shot timer.

count The number of times that the timer should repeat before automatically stopping,
assuming that the timer is not a one shot timer. Specify -1 to allow an unlimited
number of repeat firings

rtime must be specified and a value of 0 for rtime and repeat indicates that the timer should stop firing.

For example, to start a timer that fires in 1s from the event and then every 500ms afterwards:

<action ... type="timer" data="name=MyTimer,rtime=1000,repeat=500" />

Then to stop the timer:

<action ... type="timer" data="name=MyTimer,rtime=0,repeat=0" />

An event will be generated each time that the timer fires and will be named timer.<name> so for the
examples above, the event would be generated would be timer.MyTimer.

152

Chapter 7. Render Extension
Definitions

Common Render Extension Options
The follow is a list of common options across all render extensions

• x - x position of the render extension relative to the control (number, optional, default: 0)

• y - y position of the render extension relative to the control s(number, optional, default: 0)

• width - width of therender extension, if -1 then it will set to the size of the object being rendered (number,
optional, default: width of object it is attached to)

• height - height of the render extension, if -1 then it will set to the size of the object being rendered
(number, optional, default: height of object it is attached to)

• alpha - Alpha value for this render extension (number, optional, 0-255, default: 255 (opaque))

• rotation - Rotation for the item, (0-360) (number, optional, default: 0)

• valign - Vertical alignment within the control (number, optional, default: 0)

 0: default, top

 1: top

 2: center

 3: bottom

• halign - Horizontal alignment within the control (number, optional, default: 0)

 0: default, left

 1: left

 2: center

 3: right

Render Extension Alignment

A render extension can have a vertical and horizontal alignment. This alignment is based on the control
area and the render extension position and size. The following describes the effects of these parameters
on alignment.

Width and height set, position set to (0,0)

Render Extension Definitions

153

Width and height set, position set to (5,5). The position functions as an offset to the alignment

Fill
The fill render extension draws a filled rectangle to the screen.

Fill Render Extension Options
• color - Color to use for item (number RGB format, optional)

Render Extension Definitions

154

Polygon
The polygon render extension draws a filled (convex) polygon to the screen. This extension is only
available when the polygon plugin has been loaded.

Polygon Render Extension Options
• style - The style of polygon to render (string)

 fill: draw a filled polygon using color attribute

 line: draw a line using color attribute

 lineloop: draw a line (with connected ends) in the using color attribute

 filloutline: draw a filled polygon using color attribute, then outlined with outlinecolor
attribute

• antialias - whether to antialias the polygon (number)

 0: do not antialias

 1: antialias

Single width outlined polygons are not anti-aliased on OpenGL ES 2.0 platforms. The multipass option
for the OpenGL ES 2.0 Storyboard runtime controls polygon anti-aliasing.

• points - a list of points for the polygon (string)

 List of points separated by a space. Each point looks like: x:y

• color - The color used to stroke the polygon. (color)

• outlinecolor - The color used to outline a filled polygon if the style is filloutline, this is currently a 1
pixel outline. (color)

• linewidth - Thickens with which to draw the outline

Rectangle
The rectangle render extension draws a single pixel outline rectangle to the screen.

Rectangle Render Extension Options
• color - Color to use for item (number RGB format, optional)

Image
The image render extension draws an image to the screen. Images can be scaled and tiled. When scaled,
the image can also be set to maintain the aspect ratio.

Image Render Extension Options
• name - The name of the image to use (string, optional)

Render Extension Definitions

155

• scale - Enable scaling of the image if set to 1. The image will be loaded at full resolution and then scaled
when rendered. If width and height are not set the image is scaled to the control size (number, optional)

• loadscaled - Enable scaling on load of the image if set to 1. This will load the image at the specified
size and scale during the image decode. If width and height are not set the image is scaled to the control
size (number, optional)

• tile: -Tile the image, if width and height are not set the image is tiled to the control size (number, optional)

• aspect - If scaling maintain the images aspect ratio (number, optional)

• Center Rotation - If this value is turned on then any rotation applied to the image will happen around
the center of the image and the values of Center X, Center Y will be ignored.

• Center X, Y - These values are only applied when the Center Rotation option is disabled and they
specify the location of the rotation center point as a value relative to the control's upper left corner as
0,0 increasing as you go right and down. So to rotate around the center of a control whose width, height
was 10, 20 you could specify a center point of X = 5 and Y = 10

Non-scaled, Scaled and Tiled

Image Alignment

Text
The text render extension draws a string to the screen. Strings can be wrapped on word boundaries and
also rotated orthogonally. The following shows the effects of rotation on strings.

Render Extension Definitions

156

Text Render Extension Options
• text - The text string to display (string, optional)

• font - The font to use (string, optional)

• size - The point size of the string (number, optional)

• underline - Specifies if the string show display an underline

 0: no underline

 1: underline in text color

• style - Style to render in (number, optional)

 0: Bitmap

 1: Anti Aliased

• wrap - wrap text string to fit within render extension width

 0: no text wrapping

 1: text wrapping

External
The external render extension creates a buffer for other system applications or tasks to render into, things
such as video players and web browsers. This extension is only available when the external plugin has
been loaded.

External Render Extension Options
• name - The name of the external render extension. This information should be provided by the external

render extension application provider and is used to allow the application to send update messages to
the Storyboard Engine.

• object This is the path to a shared memory object which is created by the external application and is
loaded by the Storyboard Engine. This information should be provided by the external render extension
application provider.

3D Model
The 3d model render extension renders a 3d model into the control. Currently models in Wavefront Object
(.obj) format are supported. This extension is only available when using OpenGL or OpenGL ES 2.0 based
render managers, and requires the model3d plugin to be loaded.

The coordinate system in the render extension is the default OpenGL default coordinate system, with
positive x to the right, positive y up, and positive z towards the viewer. The camera position defaults to
(0, 0, 0), with the view direction along the negative z axis.

A Phong reflection model is implemented. A directional light source is present with white light coming
from the (0, 1, 1) direction. The Phong model makes use of three terms:

Render Extension Definitions

157

• Ambient - The color of the material in the absence of direct light. The material will never appear darker
than the ambient color.

• Diffuse - The color of light reflected from the material.

• Specular - The color of the highlights from the material. The specular exponent controls how large
the highlight is.

For more details on the Phong reflection model refer to Phong Reflection Model [http://en.wikipedia.org/
wiki/Phong_reflection_model] or to any book on computer graphics.

Rotations for the model are defined using Euler angles, with rotations applied around the z (psi), y (theta)
and then x (phi) axes.

An OBJ file defines vertices and faces, and optionally normals and texture coordinates. If normals are not
present, they will be calculated according to the convention that vertices in a face are specified in counter-
clockwise order. If texture coordinates are not present, the model will not be rendered using a texture.
Faces may be grouped together, and each group may be rendered with a different material.

Each OBJ file may also specify a Material (.mtl) file which allows for the material properties of the model
to be specified. The following properties in a material file are currently supported:

• d - The transparency (alpha) of the material.

• Ka - The ambient lighting component of the material.

• Kd - The diffuse lighting component of the material.

• Ks - The specular lighting component of the material.

• Ns - The specular lighting exponent of the material.

• map_Kd - The texture specifying the diffuse color of the material. If the texture can be loaded, it will
be used rather than the Kd parameter to when calculating the diffuse color.

If a material file is not present, the object will be rendered with a white color.

3D Model Render Extension Options
• filename - The name of the model to load.

• camera_position_x - The x position of the camera.

• camera_position_y - The y position of the camera.

• camera_position_z - The z position of the model.

• azimuth - The rotation of the camera around the y axis in degrees.

• elevation - The rotation of the camera around the x axis in degrees.

• camera_field_of_view - The field of view the camera in degrees. The field of view specifies how much
of visual sphere is mapped to the control. A larger field of view is equivalent to using a wide-angle lens
on a camera, and a smaller field of view is equivalent to using a zoom lens.

• model_position_x - The x position of the model.

• model_position_y - The y position of the model.

http://en.wikipedia.org/wiki/Phong_reflection_model
http://en.wikipedia.org/wiki/Phong_reflection_model
http://en.wikipedia.org/wiki/Phong_reflection_model

Render Extension Definitions

158

• model_position_z - The z position of the model.

• model_orientation_phi - The rotation of the model around the x axis in degrees.

• model_orientation_theta - The rotation of the model around the y axis in degrees.

• model_orientation_psi - The rotation of the model around the z axis in degrees.

159

Chapter 8. Scripting with Lua
The Storyboard Lua API (Lua API) gives developers access to the Engine though a Lua scripting interface.
 This API is a library of functions which allow interaction with the Engine by manipulating data and
working with events and user interface components. Through the Storyboard Lua API developers can:

• Get and set data values from the model

• Inject application events

• Manipulate model objects such as controls/layers

The Storyboard Lua plugin is built on top of the standard 5.1 release of Lua available from www.lua.org.
While the core Lua interpreter is unchanged from the standard release, two additional modules have been
incorporated to facilitate development with Storyboard:

The bitwise manipulation module (bit32) from Lua 5.2 has been built-in to this Lua plugin. This module
provides a native implementation of several standard bit operations, including those required for text
conversion to/from UTF-8. The documentation for the bitwise functions available from this module can
be found in the Lua 5.2 Reference Manual [http://www.lua.org/manual/5.2/manual.html#6.7]
The Storyboard module (gre) is included that provides function extensions to manipulate and work with
the currently active Storyboard model. This module also incorporates the Storyboard IO communication
API that can be used to send events to external programs.
.

Lua Function Parameters
Each Lua function invoked from the Storyboard is passed two arguments:

script_function_name(table mapargs, string allargs)

The first argument, mapargs, is a Lua table whose keys provide the context in which the action is being
invoked along with any action specific argument and parameters. This context includes the application,
screen and control the action was associated with, the currently focused control, any arguments provided
to the action as well as all of the event data that cause the action to fire.

The following keys are always available inside the context’s table:

context_app

The application context of the current action

context_screen

The screen context of the current action (the current screen)

context_layer

The layer context of the current action (the current layer)

context_control

The control context of the current action (the current control)

context_group

The control context of the current action (the current group)

www.lua.org
http://www.lua.org/manual/5.2/manual.html#6.7
http://www.lua.org/manual/5.2/manual.html#6.7

Scripting with Lua

160

context_row

If the context_control is a Table then this is the row index of the current cell

context_col

If the context_control is a Table then this is the column index of the current cell

context_target

The current context (app, screen, layer, or control) that the event was targeted at

context_event

The name of the event the triggered the action

context_event_data

A pointer to a Lua table containing any event data. The event data is different for each event and is defined
in the event definition.

The second argument, allargs, provides a string containing the exact same string that was provided to the
data arguments of the action.

Example of using context data:

function get_context(mapargs)
 print("triggered by event : "..mapargs.context_event)
 print("event was targeting : "..mapargs[mapargs.context_target])
end

Passing Extra Parameters to Functions
Lua actions are identified using an action type of Lua and setting the specific Lua function and extra
parameters (if required) in the action arguments. Any extra parameters will be transferred directly to the
Lua function through first argument (a Lua table) and the data can be accessed by using the parameter
name as the table index.

function my_lua_func (mapargs , allargs)
 local p = mapargs.paramter1
 print("my_lua_func was passed : ".. tostring(p))
end

Storyboard Lua Integration
Since Lua has a tight integration with the Storyboard, there are some additional functions that have been
added to facilitate access directly to data in the Storyboard model without having to use the Storyboard
IO communication channel to access data and generate events.

Scripting with Lua

161

The complete Lua API can be found in the Storyboard Lua API section of this document.

Lua Execution Environment
The Storyboard Engine Lua plugin provides a slightly different execution environment when compared
to normal Lua script execution.

Normally a single Lua script serves as the starting point of script execution and all other scripts would be
included using the Lua require() declaration. The Storyboard Lua plugin provides a slightly different
loading behaviour in that it will pre-load all of the Lua scripts contained in the scripts directory at engine
initialization time. The load ordering can be controlled by using the require statement to explicitely
order dependencies. Since the require mechanism is used to perform the loading, any project files that
use the same names as built-in Lua modules (ie table.lua, string.lua or io.lua) will generate a load time
warning indicating the potential load time resource collision.

A side effect of this early module loading and execution is that any Lua script that is located outside of
function blocks will have the opportunity to run before the application is fully initialized. This can be used
to seed early execution environments or load preferences before the UI is in place and ready to render.
Alternatively, this early initialization is possible by binding a callback to the gre.init event.

In addition to loading all of the script files in the scripts directory, the Lua plugin modifies the
package.path variable and ;; default search path to automatically search the scripts directory.

A convenience variable, gre.SCRIPT_ROOT is pushed into the execution environment that contains
the path from the current working directory to the scripts directory. This variable can be used to locate
additional resource files or to include extra script directories in a manner that is relative to the overall
deployment bundle.

print("Script base directory: " .. tostring(gre.SCRIPT_ROOT))
-- Look for additional module files in the scripts/modules directory
package.path = package.path .. ";" .. gre.SCRIPT_ROOT .. "/modules/?.lua"

Asynchronous Lua Support
The asynchronous Lua support is provided in two fashions:

Lua Action: To create an independent Lua thread in response to an action, the user can add an 'async'
parameter to any existing Lua script and it will automatically create and run that action outside of the
main UI thread.

Lua Script There is a new Lua API call gre.thread_create() that takes a single parameter which is a function
to execute. This function will be executed and scheduled to run in an independent thread of execution.

Threads are created using the system's underlying native operating system thread support. Operations
are synchronized explicitly through locks in the Lua VM, however there is no explicit support for data
synchronization (ie mutexes, condition variables)

The suggested communication pattern for inter-thread communication is to use Storyboard IO to inject
event data into the system. This is similar to the idea behind LuaLanes or WebWorkers where inter-task
communication is based on message passing.

Threads will be hard-terminated at exit. Clients should establish their own protocol where a soft shutdown
is required to trigger any asynchronous threads to terminate.

Scripting with Lua

162

Lua Debugger

Introduction

The Storyboard Lua Debugger enables the developer to monitor the flow of execution of the Lua scripts
used by the Storyboard application. Using the debugger it is possible to step line by line through a Lua
script while examining the variable values that are being used by the Lua functions.

Note

The Lua debugger is configured such that it can only be used with the simulator runtimes on the
host platforms that support Storyboard Designer. For assistance in configuring the debugger for
embedded targets, contact Crank Software support (support@cranksoftware.com).

Configuration

The Storyboard Lua debugger is only available with Storyboard Suite versions 1.1 and newer.

The Designer debugging environment communicates with the application's Lua script plugin using
network sockets in a client/server model. The Storyboard application acts as the client and is controlled
by the Designer debug environment which acts as the server.

In version 4.0, creating and launching the debug server is an automated process. As such, to configure Lua
debugging it suffices to take the following steps:

1. Create a Storyboard application launch configuration

2. Include the Storyboard Lua plugin and enable debugging

3. Launch the Storyboard application

The first two steps are part of a one time configuration required to set-up the application and the debugger.
After the initial set-up, only the last step needs to be performed in order to launch an application with the
Lua debugger running.

Create a Storyboard Launch Configuration

A Storyboard Launch configuration is automatically created when a Storyboard application is simulated
via Run > Simulate Storyboard Project or by right clicking on the GDE file and selecting Storyboard
Simulator.

In order to create a new launch configuration, or to customize an existing one, we need to open the
Launch Configuration dialog. This can be done by selecting Run > Storyboard Simulator Configurations
from the main menu. This will open a dialog where you can create, duplicate or delete simulator launch
configurations. You can also open the Launch Configuration dialog via the icon on the toolbar.

Enable Lua Debugging

From the launch configuration dialog select the configuration that is to be used for the debug session.
In the plugin listing ensure that the Lua plugin is selected and that the Enable Lua Debugger option has
been selected.

Scripting with Lua

163

Launch the Storyboard Application

With the Storyboard launch configuration created and the Lua plugin and debug mode enabled, you can
now run the Storyboard application Run > Storyboard Simulator Configurations ... > [Your Config].

This will launch your application and an appropriately configured Lua Attach to Application debug
configuration. The two will connect automatically and your application will immediately begin running.
To confirm that the connection has taken place and the Lua debugger is running, check the output console
for the following:

If you change to the Debugger perspective, the Debug view should look like this:

You are now able to start debugging your Lua code.

Scripting with Lua

164

Debugging

The Lua debugger works like a traditional debugger. The Debugger perspective provides an alternative
layout of views related to debugging activities.

Breakpoints are listed in the Breakpoints view, local variables that are in scope for the selected frame are
show in the Variables view. The current stack trace and execution control (step, continue) are provided
in the Debug view.

Breakpoints

Breakpoints can be placed directly in the editor for Lua script files. Breakpoints can be toggled on/off by
double clicking in the margins of the Lua script file where the execution should be stopped. While it is
possible to place breakpoints on all lines of a Lua script file, not all lines are breakable due to the manner
in which the Lua script is executed. Declaration breakpoints may not resolve to an execution stop point
in the script.

Breakpoints can also be enabled and disabled and removed by selecting them from the listing in the
Breakpoints view and performing the appropriate operation. It is also possible to navigate to directly to
the script source file from withing the Breakpoints view by right clicking and selecting Go To File.

Scripting with Lua

165

Variables

Variables are displayed in a hierarchical manner in the Variables view. Global variables are displayed in
a special table and listed as globals while function parameters and local variables are displayed as top
level elements. Strings and numeric values are displayed directly, while tables can be navigated by double
clicking their nodes and driving down.

Stepping, Continuing and Terminating

The Debug view provides a list of active debug sessions and the execution stack trace when a session is at
a breakpoint. Once a breakpoint is hit, then it is possible to single step to the next line of code, to continue
the execution until the next breakpoint is encountered or to terminate the application all together using
the view's toolbar commands.

Storyboard Lua API

gre.SCRIPT_ROOT

gre.SCRIPT_ROOT

Scripting with Lua

166

This is a variable that is filled in by the Storyboard Engine to contain the value of the project's scripts
directory.

The gre.SCRIPT_ROOT variable provides a convenient way to reference the file resources in a location
independent, project relative, fashion. When used in conjunction with the gre.env() function, the
gre.SCRIPT_ROOT can provide an effective way to configure the search path for extra Lua modules.

Example:

 local data_file = gre.SCRIPT_ROOT .. "/input_data.csv"

gre.set_data

 gre.set_data(
 table
)

Sets one or more items in the Storyboard application's data manager. Each index and value in the table
passed in will be set in the data manager using the index’s name as the key.

Parameters:

 table A table containing the variable to change as the key and the value to change it to as that key's value.

Example:

function lua_func(mapargs)
 local data_table = {}
 data_table["variable_name"] = "variable data"
 gre.set_data(data_table)
end

gre.get_data

gre.get_data(
 key
 [, key2, ...]
)

Gets one or more values from the data manager. Each argument to the function is interpreted as a data
manager key whose value should be extracted from the data manager. This function returns a table using
all the values as indexes and the corresponding value is the data returned from the data manager. A nil is
returned for any values that do not match a key in the data manager.

Scripting with Lua

167

Parameters:

 key The key whose value should be extracted from the data manager.

Returns:

 A table containing the passed in arguments as keys and the resulting data manager values as
 the values associated with those keys.

Example - Accessing Control Variables:

function get_data_fuc(mapargs)
 --When accessing control variables, use the following qualified
 --model path Layer.Control.Variable
 local data_table = gre.get_data("my_layer.my_control.variable_name")
 local value = data_table["my_layer.my_control.variable_name"]
 print("control_variable_name = " .. tostring(value))
end

Example - Accessing Control Width (Internal Variable):

function get_control_width(mapargs)
 --This will extract the width (grd_width) of the contro
 --'my_control' on the layer 'my_layer'
 local data = gre.get_data("my_layer.my_control.grd_width")
 local value = data["my_layer.my_control.grd_width"]
 print("The width of the control is " .. tostring(value))
end

gre.set_value

gre.set_value(
 key,
 value
 [, key2, value2, ...]
)

Set a variable in the data manager to a particular value. This function is a convenience function on top of
gre.set_data that allows the key and value to be passed as a set of arguments to the function instead
of having to create a table containing the key/value pairs.

Parameters:

Scripting with Lua

168

 key A string value containing the key to be set with the next following value
 value The value to be assigned to the preceding argument (key)

Example:

function lua_func(mapargs)
 -- Assign the string 'variable_data' to the application variable
 -- 'variable_name'
 -- This example is the same as gre.set_data()
 gre.set_value("variable_name", "variable_data")
end

gre.get_value

gre.get_value(
 key
 [, key2, ...]
)

Get the value of a variable from the data manager. This function is a convenience function on top of
gre.get_data that allows the value to be returned directly to the caller instead of a single table return
value. A nil is returned for any values that do not match a key in the data manager.

Parameters:

 key The key whose value should be extracted from the data manager.

Returns:

 The value associated with the data manager entry for the key, or nil if no entry exists. If multiple
 keys are specified, then multiple return values will be generated matching the argument order.

Example - Accessing Control Width:

function get_control_width(mapargs)
 -- This will extract the width of the control 'my_control'
 -- on the layer 'my_layer'
 -- This is the same example as gre.get_data()
 local value = gre.get_value("my_layer.my_control.grd_width")
 print("The width of the control is " .. tostring(value))
end

gre.send_event

Scripting with Lua

169

gre.send_event(
 event_name,
 [channel]
)

Send an event to the application or to a Storyboard IO channel. channel is an optional parameter and if
channel is not passed then the channel will be chosen as follows:

If the environment variable GREIONAME is set then it will be used otherwise the default channel is used.

Parameters:

 event_name A string containing the event to send
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Example:

-- Send to the event to the application :
gre.send_event("my_event")

--To send the event to a Storyboard IO channel via parameters:
gre.send_event("my_event", “io_channel_name”)

gre.send_event_target

gre.send_event_target(
 event_name,
 target,
 [channel]
)

Send an event to a targeted model element (control, layer instance or screen) using the model's fully
qualified path. The channel is an optional parameter.

Parameters:

 event_name A string containing the event to send
 target A string containing the object to target the event to (see Storyboard IO)
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Example:

Scripting with Lua

170

-- Send to the event directed at a particular control target:
gre.send_event("my_event", "my_layer.my_control")

gre.send_event_data

gre.send_event_data (
 event_name,
 format_string,
 data,
 [channel]
)

Send an event with custom data to the application or to a Storyboard IO channel. The data parameter is a
Lua table where the indexes match the values from the format string. channel is an optional parameter.

Special consideration is required for sending data that is to be formatted as an array (ie N[suf]M where
M is greater than 0). In this case the data entry should be provided as a Lua table and not as a raw value
parameter.

Parameters:

 event_name A string containing the event to send
 format_string A string format of the event data payload
 data A table whose keys match up with the keys specified in the format_string
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

-- Send a 'int32_update' event with a 32bit signed integer (int32_t)
-- payload to the 'controller' channel
function send_integer(value)
 loca format = "4s1 value"
 local data = {}
 data["value"] = value
 gre.send_event_data("int32_update", format, data, "controller")
end

-- Send a 'int16_update' event with two 16bit signed integers (int16_t)
-- payload to the 'controller' channel
function send_two_integers(value1, value2)
 loca format = "2s1 first 2s1 second"
 local data = {}
 data["first"] = value1
 data["second"] = value2
 gre.send_event_data("int16_update", format, data, "controller")
end

Scripting with Lua

171

-- Send an 'array_update' event with an array of int32_t numbers (provided
-- as a table) to the client
function send_integer_array(values)
 -- Generate the format string dynamically based on the number of entries
 local count = #values
 local format = string.format("4s%d values", count)
 local data = {}
 data["values"] = values
 gre.send_event_data("array_update", format, data, "controller")
end

send_integer(12)
send_two_integers(10, 20)
send_integer_array({10, 20, 30, 40})

gre.receive_event

gre.receive_event(
 channel
)

Receive an event from a Storyboard IO channel. This is a blocking call and works best when used on
a separate Lua thread.

Parameters:

 channel A Storyboard IO channel to receive the event on.

Returns:

 event A table containing the name, target, format and a data table from a received event.

Example:

-- Receive a Storyboard IO event with data payload x, y, z:
ev = gre.receive_event("my_channel")

if ev ~= nil then
 print(ev.name)

 for k,v in pairs(ev.data) do
 print(tostring(k).." "..tostring(v))
 end
end

--To disconnect from my_channel:
gre.greio_disconnect("my_channel", true)

Scripting with Lua

172

gre.greio_disconnect

gre.greio_disconnect(
 channel,
 [is_receive_channel]
)

This function forces any cached Storyboard IO channel connections to the specified channel to be closed.
Subsequent calls using the same channel name will re-establish the connection to the channel if required.

Parameters:

 channel The channel that is to be disconnected.
 is_receiving An optional boolean parameter.
 -True if closing a receiving channel.
 -False or no argument if closing a sending channel.

Example:

-- Send an event to a custom channel
gre.send_event("StoryboardRocks", "my_channel")
-- Close the cached connection to that channel
gre.greio_disconnect("my_channel")

gre.touch

gre.touch(
 x ,
 y,
 [channel]
)

Send a touch event to the application at the co-ordinates passed in through the parameters. channel is an
optional parameter

Parameters:

 x The x position to simulate the touch event at
 y The y position to simulate the touch event at
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

Scripting with Lua

173

gre.key_up

gre.key_up(
 code,
 [channel]
)

Send a key_up event to the application with the scancode passed in the parameters. channel is an optional
parameter

Parameters:

 code The utf-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

gre.key_down

gre.key_down(
 code,
 [channel]
)

Send a key_down event to the application with the scancode passed in the parameters. channel is an
optional parameter

Parameters:

 code The utf-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

gre.key_repeat

gre.key_repeat(
 code,
 [channel]
)

Scripting with Lua

174

Send a key_repeat event to the application with the scancode passed in the parameters. channel is an
optional parameter

Parameters:

 code The utf-8 character code to inject
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

gre.redraw

gre.redraw(
 x,
 y,
 width,
 height,
 [channel]
)

Force a screen redraw. channel is an optional parameter. Specifying a x,y,width,height of 0 will result
in a full screen refresh occurring.

Parameters:

 x The x position of the redraw bounding box event
 y The y position of the redraw bounding box event
 width The width position of the redraw bounding box event
 height The height position of the redraw bounding box event
 channel An optional Storyboard IO channel to send the event on, if not specified the
 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.
Example:

gre.quit

gre.quit(
 [channel]
)

Send QUIT event to application to force shutdown. channel is an optional parameter.

Parameters:

 channel An optional Storyboard IO channel to send the event on, if not specified the

Scripting with Lua

175

 event is added directly into the current Storyboard application event queue
 if neither the environment variable or global GREIONAME variable are set.

Example:

-- Send a quit message to the application
gre.quit()

gre.move_layer

gre.move_layer(
 layer_name,
 dx,
 dy,
 x,
 y
)

Move a layer to a new position. The layer_name is the name of the layer or a variable that is associated
with the layer name. Setting dx or dy will move the layer by the specified delta from its current position.
The dx and dy values can be 0 to set an absolute position using the x and y values only.

Parameters:

 layer_name The model full path of the layer to move
 dx A delta from the current x position or 0 to move using x
 dy A delta from the current y position or 0 to move using y
 x The x position to move to in absolute co-ordinates
 y The y position to move to in absolute co-ordinates

Example:

gre.move_control

gre.move_control(
 control_name,
 dx,
 dy,
 x,
 y
)

Move a controls to a new position. The control_name is the name of the control or a variable. Setting dx
and or dy will move the layer by the specified delta from its current position. The dx and dy values can
be 0 to set an absolute position using the x and y values only.

Scripting with Lua

176

Parameters:

 control_name The model full path of the control to move
 dx A delta from the current x position or 0 to move using x
 dy A delta from the current y position or 0 to move using y
 x The x position to move to in absolute co-ordinates
 y The y position to move to in absolute co-ordinates

Example:

gre.clone_control

gre.clone_control(
 reference_control_name,
 new_control_name,
 layer_name,
 data
)

Create a new control (new_control_name) on an existing layer (layer_name) by copying all of the
properties of an existing control (reference_control_name). This new control will have all of the same
actions, variables and it's current state will match the state of the reference control that is being copied.

The data argument is a table of control attributes that match the attributes available in the
gre.set_control_attrs() function, for example x, y, width, height, hidden

Parameters:

 reference_control_name The name of the control that will be cloned. This may be a fully qualified name.
 new_control_name The name for the new control, this must be a unique name
 layer_name The name of the layer to place this control on, this layer must exist
 data Optional: A table containing control attribute tags as the keys with new values to be applied.

Example:

function create_new_control()
 local data = {}
 data["x"] = 10
 data["y"] = 10
 gre.clone_control("my_control", "my_new_control", "my_layer", data)
end

gre.delete_control

gre.delete_control(

Scripting with Lua

177

 control_name,
)

Delete a control from the model. The control must be a control which was dynamically created with the
gre.clone_control() function.

Parameters:

 control_name The name of the control to delete

Example:

function delete_control()
 gre.delete_control("my_control")
end

gre.get_control_attrs

gre.get_control_attrs(
 control_name
 tags ...
)

Get attributes for a control. Key name is the name of the control or a variable. Tags can be a list of the
following values:

 x, y, width, height, hidden, active, zindex, findex

A table with the results is returned.

Parameters:

 control_name The model full path of the control to get information about
 tags One or more tags as strings

Returns:

 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}
 -- check if my_control is currently hidden

Scripting with Lua

178

 dk_data = gre.get_control_attrs("my_control", "hidden")
 if dk_data["hidden"] == 1 then
 print("my_control is currently hidden")
 else
 print("my_control is currently visible")
 end
end

gre.set_control_attrs

gre.set_control_attrs(
 control_name,
 tag_table
)

Set attributes for a control. The control_name is the name of the control or a variable. The tag_table
contains the tags and values for the attributes to set.

 x, y, width, height, hidden, active, zindex, findex, effect

In the case of the focus index (findex), the initial value set in Storyboard Designer must be non-zero in
order for it to be changed dynamically at runtime

Parameters:

 control_name The model full path of the control to change attributes on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Examples:

function set_control_hidden()
 local dk_data = {}
 dk_data["hidden"] = 1
 gre.set_control_attrs("my_control", dk_data)
end

function set_control_blur_effect()
 local dk_data = {}
 local effect = {}

 effect["name"] = "blur"
 effect["passes"] = 3
 effect["radius"] = 1
 effect["composite"] = true

 dk_data["effect"] = effect

Scripting with Lua

179

 gre.set_control_attrs("my_control", dk_data)
end

gre.get_layer_attrs

 gre.get_layer_attrs(
 layer_name
 tags...
)

Get attributes for a layer instance associated with a particular screen. The layer_name specifies either the
fully qualified name of a layer instance using the ScreenName.LayerName naming convention or, if only
the layer name is specified, the name will refer to a layer instance associated with the current screen

The tags are a list of string attributes associated with the layer instance and can include one or more of
the following values:

 x, y, alpha, hidden, active, zindex, xoffset, yoffset

A table containing the keys and their respective values is returned or nil if the layer can not be found.

Parameters:

 layer_name The model full path of the layer to get information about
 tags One or more tags as strings

Returns:

 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 -- check if my_layer is currently hidden
 local data = gre.get_layer_attrs("my_layer", "hidden")
 if data.hidden == 1 then
 print("my_layer is currently hidden")
 else
 print("my_layer is currently visible")
 end
end

gre.set_layer_attrs

Scripting with Lua

180

gre.set_layer_attrs(
 layer_name,
 tag_table
)

Set attributes for a layer instance associated with a particular screen. The layer_name specifies either the
fully qualified name of a layer instance using the ScreenName.LayerName naming convention or, if only
the layer name is specified, the name will refer to a layer instance associated with the current screen

 alpha, hidden, active, x, y, zindex, width, height, xoffset, yoffset

Note

Any change to the width and height values affect all layers.

Parameters:

 layer_name The model full path of the layer to change attributes on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Example:

function set_layer_hidden()
 local data = {}
 data.hidden = 1
 gre.set_layer_attrs("my_layer", data)
end

gre.set_layer_attrs_global

gre.set_layer_attrs_global(
 layer_name,
 table
)

Set attributes for a layer globally on all instances of the layer on all screens. The layer_name is the name
of the layer. Table contains the tags and values for the attributes to set.

 alpha, hidden, active, x, y, width, height

Parameters:

 layer_name The model full path of the layer to change attributes on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Scripting with Lua

181

gre.get_table_attrs

gre.get_table_attrs(
 table_name,
 tags
)

Get attributes for a table. Key name is the name of the control or a variable. Tags can be any of the control
tags mentioned in section 6.1.12 and any of the following values:

rows The number of rows in the table

cols The number of columns in the table

visible_rows The number of visible rows in the table

visible_cols The number of visible columns in the table

active_row The active cell row

active_col The active cell column

row The row index of the upper left row

col The column index of the upper left column

xoffset The current scroll offset in the x direction

yoffset The current scroll offset in the y direction

Parameters:

 table_name The model full path of the table to get information about
 tags One or more tags as strings

Returns:

 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}
 -- Get the active row/column
 dk_data = gre.get_table_attrs("my_table", "active_row", "active_col")
 print("Active Cell: " .. tostring(dk_data["active_row"] .. ","
 .. tostring(dk_data["active_col"]))
end

Scripting with Lua

182

gre.set_table_attrs

gre.set_table_attrs(
 table_name,
 tag_table
)

Set attributes for a table. The table_name is the name of the control or a variable. The tag_table contains
the tags and values for the attributes to set.

 x, y, width, height, hidden, active, rows, cols, xoffset, yoffset

Parameters:

 table_name The model full path of the table to change attributes on
 tag_table A table with tags as the keys and the new values stored as the table's key values

Example:

function resize_table()
 local dk_data = {}
 dk_data["rows"] = 5
 dk_data["cols"] = 10
 gre.set_table_attrs("my_table", dk_data)
end

gre.get_table_cell_attrs

gre.get_table_cell_attrs(
 table_name,
 row,
 col,
 tags ...
)

Get attributes for a table cell. table_name is the name of the table. Tags can be a list of the following
values:

 x, y, width, height, hidden

A table with the results is returned.

Scripting with Lua

183

Parameters:

 table_name The model full path of the table to get information about
 row The row of the table to get information on
 col The column of the table to get information on
 tags One or more tags as strings

Returns:

 A table containing the tags as keys with the associated table value being the Storyboard
 value associated with that tag.

Example:

function check_if_hidden()
 local dk_data = {}
 -- check if my_control is currently hidden
 dk_data = gre.get_table_cell_attrs("my_table", 1, 1, "hidden")
 if dk_data["hidden"] == 1 then
 print("cell 1.1 of my_table is currently hidden")
 else
 print("cell 1.1 of my_table is currently visible")
 end
end

gre.get_string_size

gre.get_string_size(
 font,
 font_size,
 string,
 length,
 width
)

Calculate the area in pixels which the given string will occupy on the screen. Optionally calculate how
many characters can fit into a predefined screen area.

Parameters:

 string The string to render
 font The name of the font to render in
 font_size The size of the font to render in
 string_length The length of the string to render or 0 for all (optional)
 width A clipping width (in pixels) for the string, used to calculate how many characters fit
 (optional, by default there is no clip)

Returns:

Scripting with Lua

184

 A table containing the following entries:
 "num_bytes" number of bytes that will fit in the clip
 "width" string width in pixels as clipped by clip width
 "height" string height in pixels
 "line_height" height in pixels of the specified font

gre.poly_string

gre.poly_string(
 x_values,
 y_values
)
 or
gre.poly_string(
 {{x=, y=}, ...}
)

This is a higher performance function for generating a polygon string based on a set of numeric data points
maintained in Lua table arrays.

In the two argument form, the function receives as inputs two Lua tables whose content represents the
numeric x and y data points to be converted to a string. The tables are 1 based arrays and must be of the
same length.

In the single argument form, the function receives as input a single Lua table whose array content are
tables with an "x" and "y" member value.

The string returned is designed to be compatible with the Storyboard polygon plugin and is in the form
of X1:Y1 X1:Y2 ...

Parameters:

 x_values,
 y_values An table containing numeric data for the x and y points respectively.

 {{x=, y=}} A table containing tables with x and y members specifying the x and y points.

Example:

-- Create a triangle polygon in a 100x100 square
local x_points = { 0, 50, 100 } -- Left, Middle, Right
local y_points = { 100, 0, 100 } -- Bottom, Top, Bottom
local x_y_string = gre.poly_string(x_points, y_points)
print("X Y String: " .. x_y_string)

-- Create the same triangle, but with x,y member variables
local xy_points = { {x=0,y=100}, {x=50,y=0}, {x=100,y=100} }
local xy_string = gre.poly_string(xy_points)
print("XY String: " .. xy_string)

Scripting with Lua

185

gre.resolve_data_key

gre.resolve_data_key(
 key1
 [, key2, ...]
)

This function allows Lua scripts to resolve Storyboard context variables to a fully qualified name based
on the current execution context.

Parameters:

 key1 ... One or more string arguments containing the variable to resolve.

Returns:

 A table containing the arguments provided on input as keys with the values being the
 resolved data value.

Example:

-- Resolve the application my_var to a fully qualified name
local varname = "${app:my_var}"
local dv = gre.resolve_data_key(varname)
print("Full path for ${app:my_var} is " .. dv[varname])

gre.load_resource

gre.load_resource(
 pool_name,
 resource_name,
 [pool parameters]
)

This function will force the loading of a resource, such as an image or font, into the Storyboard application.
This can be used in order to avoid load time delays that may be incurred as resources are lazy loaded into
the application.

Parameters:

 pool_name The name of the resource pool: image or font
 resource_name The name of the resource that is to be loaded

Scripting with Lua

186

The optional parameters vary depending on the pool being specified and are not required:
 image pool:
 w, h, background The width and height to cache the image at, and whether or not to load the
 image asynchronously the 'background'
 font pool:
 size, antialias The point size of the font and if anti aliasing is to be used

These options can be passed in as a table in the 3d parameter instead, which allows any or all of them to be specified.
On completion of a 'background' loaded resource, the following event is sent:
 gre.resource_loaded 1s0 resource
Example:

-- Call this on app init to pre-load the image and font into the cache
function on_app_init(mapargs)
 gre.load_resource("image", "images/tree.jpg")
 gre.load_resource("font", "fonts/DejaVu.ttf")
-- Call this on app init to pre-load the image and scale it to 100x100
 gre.load_resource("image", "images/scaledtree.jpg", 100, 100)
 local tbl = {}
 tbl["w"]=100
 tbl["h"]=100
 tbl["background"]=1
-- Call this on app init to pre-load the image and scale it to 100x100
-- asynchronously
 gre.load_resource("image", "images/scaledtreebg.jpg", tbl)
end

gre.load_image

gre.load_image(
 image_name,
 [optional table of parameters]
)

This function will force the loading of an image into the Storyboard application. This can be used in order
to avoid load time delays that may be incurred as resources are lazy loaded into the application.

Parameters:
 resource_name The name of the resource that is to be loaded

The optional parameters are as follows:
 w The width to cache the image at
 h The height to cache the image at
 background Whether or not to load the image asynchronously the 'background'

On completion of a 'background' loaded resource, the following event is sent:
 gre.resource_loaded 1s0 resource

Scripting with Lua

187

gre.dump_resource

gre.dump_resource(
 pool_name,
 resource_name
)

This function performs the opposite of the gre.load_resource call and removes a resource from the
specified resource pool cache.

Parameters:

 pool_name The name of the resource pool: image or font
 resource_name The name of the resource that is to be removed

Example:

-- Force the tree.jpg image out of the cache, image will reload as required
function flush_tree_image()
 gre.dump_resource("image", "images/tree.jpg")
 gre.dump_resource("font", "fonts/DejaVu.ttf")
end

gre.walk_pool

gre.walk_pool(
 pool_name,
)

This function reports on the memory used by all of the resources loaded into a particular resource pool.

Parameters:

 pool_name The resource pool whose content should be reported

Returns:

 A table is returned with keys as the resources that are contained in the pool and values
 indicating the number of bytes that a particular resource is using within the system.

Example:

Scripting with Lua

188

-- Display the content of the current image cache
function show_image_cache(mapargs)
 print("Images")
 local data = gre.walk_pool("image")
 for k,v in pairs(data) do
 print(" ".. tostring(k) .. "=" .. tostring(v))
 end
end

gre.timer_set_timeout

gre.timer_set_timeout(
 function,
 timeout
)

This function creates a one-shot timer which fires after "timeout" milliseconds and then executes "function"

Parameters:

 function The function to be called when the timer fires
 timeout The time in milliseconds before the timer should fire

Returns:

 A piece of lightuserdata which serves as an identifier for the timer

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func after 1 second
function cb_set_timeout()
 idval = gre.timer_set_timeout(cb_func, 1000)
end

gre.timer_set_interval

gre.timer_set_interval(
 function,
 interval
)

Scripting with Lua

189

This function creates a repeating timer which fires every "interval" milliseconds and then executes
"function"

Parameters:

 function The function to be called when the timer fires
 interval The time in milliseconds of how often the timer should fire

Returns:

 A piece of lightuserdata which serves as an identifier for the timer

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func every 2 seconds
function cb_set_interval()
 idval = gre.timer_set_interval(cb_func, 2000)
end

gre.timer_clear_timeout

gre.timer_clear_timeout(
 id
)

This function stops an existing timer from firing

Parameters:

 id The lightuserdata representing the timer

Returns:

 Nothing

Example:

local idval = {}

Scripting with Lua

190

function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func after 5 seconds
function cb_set_timeout()
 idval = gre.timer_set_timeout(cb_func, 2000)
end

function cb_clear_timeout()
 local data

 data = gre.timer_clear_timeout(idval)
end

gre.timer_clear_interval

gre.timer_clear_interval(
 id
)

This function stops an existing timer from firing

Parameters:

 id The lightuserdata representing the timer

Returns:

 Nothing

Example:

local idval = {}
function cb_func()
 print("CB FUNC HAS BEEN CALLED")
end

--Call cb_func every 5 seconds
function cb_set_interval()
 idval = gre.timer_set_interval(cb_func, 2000)
end

function cb_clear_interval()
 local data

 data = gre.timer_clear_interval(idval)
end

Scripting with Lua

191

gre.thread_create

gre.thread_create(func)

This function starts a new operating system thread of execution that is independent from Storyboard's main
thread. The function provided as an argument indicates the starting context for this new thread of execution.

The Storyboard data and event (get_data/set_data/send_event) API are thread safe. However
the execution of data changes outside of the main thread of execution can have a significant impact on
performance of the application and the preferred way of synchronizing data obtained in a thread with the
Storyboard UI thread is by using a Storyboard IO event and sending the data via gre.send_event or
gre.send_event_data. There are no thread specific synchronization primitives, such as mutexes,
for synchronizing Lua data access, serialize to the main thread using an event if this is a requirement.

In scenarios where a controlled shutdown and restart of a Storyboard application is required, separate
threads of execution pose a synchronization challenge. In these situations all created thread(s) must have
their execution interrupted and terminate in order for a clean shutdown to be observed. This can be
accomplished nominally by intercepting the gre.quit event and then taking appropriate action to flag
a shutdown variable or send an unblocking event.

This function is not available on all systems and is not available if gre.thread_create is set to nil.

Parameters:
 func The Lua function to run in a separate thread of execution from the main UI thread.
Returns:
 Nothing

Example:

-- Flag to indicate that we want our threads to quit executing
local quit_threads = false

-- Run a poll loop waiting for a file (a_file) to appear and
-- then send an event
function async_function()
 while(not quit_threads) do
 local fp = io.open("a_file")
 if(fp ~= nil) then
 fp:close()
 gre.send_event("file_created")
 return
 end
 end
end

-- Create the monitoring thread of execution
gre.thread_create(async_function)

Scripting with Lua

192

gre.vfs_open

gre.vfs_open(filename)

This function provides read-only file access to resources packaged in the Storyboard virtual filesystem
for embedded targets with no filesystem support. The function works similarly to the Lua io.open()
and returns a FILE type object based on a project relative path. The returned object provides the
file:read(), file:lines(), file:seek() and file:close() operations as described in
the standard Lua documentation.

The use of this function can incur significant memory overhead if large files are read entirely into memory.

This function is not available on all systems and is not available if gre.vfs_open is set as nil.

Parameters:
 filename The name of the resource to open as a project relative path (ie translations/french.csv)
Returns:
 A file handle that contains read, seek, lines, close operations.

Example:

-- Use a simple CSV parser that assumes a single delimiter between
-- variable and value
function load_translation()
 local fp = gre.vfs_open("translations/french.csv")
 if(fp ~= nil) then
 local comma, var, value
 for l in fp:lines()
 do
 comma = string.find(l, ',', 0, true)
 if(comma ~= nil)
 then
 var = string.sub(l, 1, comma - 1)
 value = string.sub(l, comma + 1)
 gre.set_data({ [var] = value })
 end
 end
 fp:close()
 end
end

gre.mstime

gre.mstime()
gre.mstime(app_relative)

Scripting with Lua

193

Retrieve the current time in milliseconds in the default, no argument flavour. This call provides a higher
resolution than the standard Lua os.clock()or os.date() functions.

When true is passed in as an argument, then the time returned will be relative to the application start
time and aligned with the timestamps that are generated by the Storyboard logging API.

Returns:

 The current time in milliseconds in a system specific manner (gre.mstime()) or the time in milliseconds
 since the start of the application (gre.mstime(true))

Example:

-- Time an operation
local s = gre.mstime()
my_function()
local e = gre.mstime()
print("my_function took " .. tostring(e - s) .. "ms")

-- Determine how long from app start to this point
local delta = gre.mstime(true)
print(string.format("Application start to now: %d ms", delta)

gre.env

gre.env(
 string_key
)
or
gre.env(
 table
)

Return information about the Storyboard runtime environment. The input can be either a single string
containing the key to look up or a table of keys for variables to match. The following table describes the
available keys:

version The version of this engine as a string value. The format of the string is four version
numbers separated by dots: major.minor.service.build.

target_os The target operating system
target_cpu The target processor
renderer The name of the graphics rendering technology being used.
screen_width The dimensions of the screen width
screen_height The dimensions of the screen height
active_screen The name of the currently active screen
render_caps The rendering capabilities. Currently the only defined capability is "3d" if 3d

rendering is supported

Scripting with Lua

194

mem_stats Platform memory statistics for the engine. The results are returned as a table of
key value pairs with two current keys defined. The key 'process_used' indicates the
memory used by the sbengine process. The key 'heap_used' indicates only the heap
(malloc) memory used by the sbengine process. Not all rendering engine platforms
support all metrics, in which case the value will be set to 0 indicating no information.

Parameters:

Returns:

 If a single string is provided as an input argument, just a single data value for that argument is returned

 If a table is provided as an input argument, then a table with key/value pairs corresponding to the keys
 of the input argument and the results they provide.

Example:

-- Get the target OS for dynamic module loading
local os = gre.env("target_os")
print("Running on target OS: " .. tostring(os))

-- Report on the storyboard version and rendering technology
local info = gre.env({"version", "renderer"})
local msg = string.format("Storyboard version %s (%s renderer)", info.version, info.renderer)
print(msg)

gre.animation_create

gre.animation_create(fps, [auto_destroy], [end_callback])

Create a new animation at the desired frame rate (fps). The second parameter (optional), auto_destroy,
tells if the animation should be released once completed. If you specify a value of 1 the animation will be
released and the returned id is not valid once the animation has completed. The third parameter (optional)
indicates a callback function to be invoked when the animation is complete.

Parameters:
 fps The animation frame rate
 auto_destroy Pass 1 in to release the animation once completed
 end_callback Provide a Lua function to be called in the animation
Returns
 An animation id to be used on future animation calls, nil on failure.

Example:

function animation_create(mapargs, fps)
 local id

Scripting with Lua

195

 id = gre.animation_create(fps)
end

gre.animation_add_step
gre.animation_add_step(id, data)

Add a step to a created animation. The id must be from a call to gre.animation_create. The data parameter
defines the animation step values.

Parameters:
 id The animation id

 data A table of animation step values which can include:

 key: The data key for the animation step to act upon
 rate: The animation rate string: [linear|easein|easeout|easeinout|bounce]
 duration: The length of the step (msec)
 offset: The offset from animation start where this step begins (msec)
 from: The value to start the animation at, if not specified the value is the current value of "key"
 to: The end point for the animation
 delta: The delta for the end of the animation from the start point. If both "to" and "delta" are given
 then the "to" value is used.

Example:

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec and auto-destroy
 -- it on completion
 id = gre.animation_create(60, 1)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)
end

gre.animation_destroy
gre.animation_destroy(id)

Destroy the animation associated with id.

Parameters:
 id The animation to destroy

Example:

Scripting with Lua

196

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec
 id = gre.animation_create(60)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)

 -- destroy it
 gre.animation_destroy(id)
end

gre.animation_trigger
gre.animation_trigger(animation_id, data)

gre.animation_trigger("animation_name")

Trigger an animation to run. If an animation_id is used to trigger the animation, then it must be the return
value from gre.animation_create(). If a name is used to trigger an animation, then that name must be the
name of the animation specified in Designer. This function can take an optional parameter, data_table.
The data_table contains the tags and values for the extra arguments to set.

Parameters:
 animation_id The animation to trigger
 data A table containing the tags and values for the extra arguments to set
 id The animation id used in the case of multiple animations with the same name
 context The fully qualified name of an object in the model which will be used as the context for the animation

Example:

function create_animation(mapargs)
 local data = {}

 -- slide the x position 400 pixels over 2000 msec and auto-destroy
 -- it on completion
 id = gre.animation_create(60, 1)
 data["rate"] = "linear"
 data["duration"] = 2000
 data["offset"] = 0
 data["delta"] = 400
 data["key"] = "mylayer.mycontrol.grd_x"
 gre.animation_add_step(id, data)

Scripting with Lua

197

 gre.animation_trigger(id)
end

--Example of using gre.animation_trigger passing animation names.
function cb_toggle_cur_5day()
 if cur_5day_toggle == false then
 gre.animation_trigger("show_5day")
 else
 gre.animation_trigger("hide_mon_to_fri")
 end
end

--Example of using gre.animation_trigger with context.
function cb_toggle_cur_5day()
 local data = {}

 data["context"] = "Layer1.mycontrol"
 gre.animation_trigger("show_5day", data)
end

Storyboard Lua DOM Module
The Storyboard gredom Lua module provides a limited access to the hierarchical model used by the
Storyboard Engine. This functionality is provided as an external Lua module and is located in the lib/
gredom.so file of the Storyboard Engine target distributions.

The DOM module provides two sets of function interfaces. The first set of functions are associated with
the gredom namespace and are used to lookup or access an Lua object (table) that contains a special
set of methods (metatable entries) that are used to extract additonal information about the object. In
this documentation the object returned from the gredom namespace functions will be referred to as a
DOMOBJECT object. Methods associated with the DOMOBJECT object must be invoked using the Lua
colon (:) notation for example DOMOBJECT:get_name()

gredom.get_application
gre.get_application()

Get an object handle for the application root

Returns:
 A DOMOBJECT object that represents the application.

gredom.get_object
gre.get_object(fqn)

Get an object handle for the

Scripting with Lua

198

Parameters:
 fqn The fully qualified name of the model entry (screen, layer, control), or a short name to
 autosearch for a match

Returns:
 A DOMOBJECT object that represents the named model object.

DOMOBJECT:get_name
DOMOBJECT:get_name()

Gets the name of the specified DOM Object

Returns:
 The name of the specified DOMOBJECT

DOMOBJECT:get_type
DOMOBJECT:get_type()

Gets the Storyboard type of the specified DOMOBJECT. The type may be one of
gredom.APP, gredom.SCREEN, gredom.LAYER, gredom.LAYER_INSTANCE, gredom.GROUP
grecom.CONTROL, gredom.TABLE, gredom.TEMPLATE.

Returns:
 A the type of the specified DOMOBJECT.

DOMOBJECT:get_parents
DOMOBJECT:get_parents()

Gets the parent DOMOBJECT objects for the specified DOMOBJECT. An array of parents is returned
because in some cases, such as for a layer, there may be more than one parent representation.

Returns:
 An array table containing the parent DOMOBJECT entries.

DOMOBJECT:get_children
DOMOBJECT:get_children()

Gets the child DOMOBJECT objects for the specified DOMOBJECT. This function returns only the model
objects and does not include the variables.

Scripting with Lua

199

Returns:
 An array table containing the child DOMOBJECT entries

DOMOBJECT:get_variables
DOMOBJECT:get_variables()

Gets variables associated with the specified DOMOBJECT

Returns:
 An array table containing the variables associated with this object.

Lua DOM Samples

require("gredom")

-- Print a list of all of the user variables associated with a specified
-- control
function print_variables(control_name)
 -- Get the DOM object for the control name passed in
 local domObject = gredom.get_object(control_name)
 if(domObject == nil) then
 print("Can't find name for " .. tostring(control_name))
 return
 end

 -- Get the variables defined on this DOM object
 local vars = domObject:get_variables()
 if(vars == nil or #vars == 0) then
 print("No variables for " .. control_name)
 else
 print("Variables for " .. control_name)
 for i=1,#vars do
 print("# " .. tostring(vars[i]))
 end
 end
end

-- Print out all of the screens where this control's container layer is
-- being used
function print_used_on_screens(control_name)
 -- Get the DOM object for the control name passed in
 local domObject = gredom.get_object(control_name)
 if(domObject == nil) then
 print("Can't find name for " .. tostring(control_name))
 return
 end

 -- Build up the full path to this object

Scripting with Lua

200

 -- Walk up the tree looking at all parents adding screens we find
 local screen_list = {}
 local parent_list = {}
 table.insert(parent_list, domObject:get_parents())

 local i = 1
 while i <= #parent_list do
 local parents = parent_list[i]
 for p=1,#parents do
 -- If this was a screen, add it to our collection
 if parents[p]:get_type() == gredom.SCREEN then
 screen_list[parents[p]] = true
 else
 -- If this has parents of its own, then add them to the search
 -- list
 parents = parents[p]:get_parents()
 if(parents ~= nil and #parents > 0) then
 table.insert(parent_list, parents)
 end
 end
 end
 i = i + 1
 end

 -- Print out all of the screens that we have identified
 print(control_name .. " is used on the following screens:")
 for screen,v in pairs(screen_list) do
 print("# " .. screen:get_name())
 end
end

-- Invoke our DOM example functions with the context control
function CBDom(mapargs)
 print_used_on_screens(mapargs.context_control)
 print_variables(mapargs.context_control)
end

Storyboard Lua Android Integration

Storyboard Lua Android Integration
On Android target platforms Storyboard provides an additional level of platform integration. In order to
access the native Java service API on Android platforms Storyboard has incorporated the LuaJava [http://
www.keplerproject.org/luajava/] module to provide a bridge from Storyboard Lua script functions to the
Android Java API.

Access to the LuaJava bridge is through the luajava Lua variable. On non-Android platforms, this
variable will not be defined and this can be used to provide alternate or simulated behaviour.

function my_callback(mapargs)
 if(luajava == nil) then

http://www.keplerproject.org/luajava/
http://www.keplerproject.org/luajava/
http://www.keplerproject.org/luajava/

Scripting with Lua

201

 print("LuaJava bridge not available")
 return
 end

 -- LuaJava available for use ...
end

The general mapping of standard Lua/Java types such as strings and numbers is handled transparently so
that Lua strings can be used in Java constructors and methods in the same way that the Java String class
would normally be used and similarly for Lua numbers and vice/versa.

When a Lua variable is created that is a reference or proxy to a Java object, then access to
the methods of that object are performed using the colon (:) notation with the Lua variable, i.e.
lua_variable:method_name() notation. When accessing static member variables of an object, this
can be performed using the traditional dot (.) notation lua_variable.member_variable_name.
This is further demonstrated in the examples shown below.

In order to access a nested Java class for instantiation or binding, the dollar sign ($) must be used as a
separator. For instance, if the Java class Bar is a nested class of Foo, then binding would work as follows:
luajava.bindClass("Foo$Bar"). This is further demonstrated in the examples below.

A description of the complete Android Java API is beyond the scope of this document. For a complete
coverage of the Android API refer to http://developer.android.com/reference/packages.html Depending
on the functionality that your application is going to access, there may be additional restrictions that must
be explicitly declared in the AndroidManifest.xml file. Permissions can be added in the Advanced
Options section when exporting your Android project. The android:debuggable option has been changed to
false by default. To change this, you will need to use your own custom manifest file. Export your manifest
file to view it by clicking the Export button under the Manifest File tab. You can make changes to this
file and then select it as a custom manifest file when exporting to ensure the manifest file is setup the
way you want it to be.

Within the Android environment the Storyboard Engine execution takes place outside of the main Android/
Java event loop. When integrating with the Android API's developers should always consider that they are
using the Android API as if they were executing in a background thread and act accordingly. This may
require the creation of additional Looper message event handlers if callback event handlers are being
used. For more information on Android process model and multi-threading considerations, refer to the
Android documentation: http://developer.android.com/guide/components/processes-and-threads.html.

Android Lua Java API

The mapping of Lua referenced objects to Android Java objects is relatively straightforward. All of the
API functionality is accessed via the luajava Lua global variable. This variable provides four functions
that can be used to access and manipulate standard Java objects and one variable that provides the Android
Activity that is required.

luajava.newInstance(className, ...) This function creates a new Java object based on the fully qualified
class name. Any additional parameters that are provided are passed
through to the standard Java constructor.

The return value is a Lua variable that is a proxy to the Java object
or nil if the class could not be instantiated.

-- Create an instance of a Java string tokenizer

http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components/processes-and-threads.html

Scripting with Lua

202

local strTk = luajava.newInstance("java.util.
StringTokenizer","a,b,c,d", ",")
while strTk:hasMoreTokens() do
 print(strTk:nextToken())
end

-- Create a new Android Intent object (unpopulated)
local intent = luajava.newInstance
("android.content.Intent")

luajava.bindClass(className) This function creates a reference to a Java class based on a fully
qualified class name. This is different from newInstance() in
that a new Java object is not created and the constructor is not
invoked, but simply a reference to the class is returned. Use this
when you need access to static fields or methods of a Java object.

The return value is a Lua variable that is a proxy to the Java Class
object specified or nil if the class could not be found.

-- Get the current system time
local sys = luajava.bindClass("java.lang.System")
print (sys:currentTimeMillis())

-- Parse a string into an Android Uri
local uriClass = luajava.bindClass("android.net.Uri")
local phoneURI = uriClass:parse("tel:6135951999")

luajava.new(classObject,) This function is similar to the newInstance() function but
rather than taking a fully qualified class name it takes an existing
Class reference, generally obtained from calling bindClass().
Additional parameters can be passed to the
Java constructor..

The return value is a Lua variable that is a proxy to the Java object
or nil if the class could not be instantiated.

-- Create a new string instance
str = luajava.bindClass("java.lang.String")
strInstance = luajava.new(str)

luajava.createProxy(interfaceNames,
luaObject)

If a Java API requires an interface to be implemented or provided as
a set of callbacks, then it is where the createProxy() function
can be used. The interfaceNames parameter is a comma separated
list of fully qualified Java interfaces that will be implemented by the
Lua variable luaObject. The names of the interface methods must
be present in the luaObject variable.

The return value is a Lua variable that can be passed to any function
or method that requires an implementation of that interface. If the
creation of the proxy fails, then nil is returned.

Scripting with Lua

203

-- Create a Lua variable with the same interface as an ActionListener
local button_cb = {}
function button_cb.actionPerformed(ev)
 -- I would do something interesting here ...
end

-- Map the Lua variable to the Java interface
buttonProxy = luajava.createProxy("java.awt.ActionListener", button_cb)

-- Use the newly created interface instance on a Java object
button = luajava.newInstance("java.awt.Button", "execute")
button:addActionListener(buttonProxy)

luajava.nativeActivity() All significant interaction on an Android system involves
working with an Activity (see http://developer.android.com/
reference/android/app/Activity.html) Storyboard applications that
are deployed to Android devices run as native activities which is a
special class of the general Activity that allows those applications
to interact directly with the graphics context and are generally C/C
++ applications rather than pure Java applications.

The return value of this function is a Lua variable that is a proxy
for the NativeActivity Java class used by this application or nil if
the class could not be instantiated.

-- Start an activity specified by a previously created Intent object
local na = luajava.nativeActivity()
if(na ~= nil) then
 na:startActivity(intent)
else
 print("No Native Activity")
end

Storyboard Lua Android Example

This example demonstrates how a phone call could be invoked as part of a Lua callback. In order for this
example to work, the AndroidManifest.xml file must be changed to give permission for calls to be made:
%<uses-permission android:name="android.permission.CALL_PHONE"></uses-
permission>

 -- Log message routine to route diagnostic messages
local function lm(msg)
 print(msg)
end

-- Call a selected phone number using the Android API
-- Input is the string number value that is to be called
local function call_phone_number(number)
 if(luajava == nil) then

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

Scripting with Lua

204

 lm("No luajava Lua object")
 return
 end

 local na = luajava.nativeActivity()
 if(na == nil) then
 lm("No native activity available")
 return
 end

 local uriClass = luajava.bindClass("android.net.Uri")
 if(uriClass == nil) then
 lm("No java.lang.String object")
 return
 end

 local phoneURI = uriClass:parse("tel:" .. tostring(number))
 if(phoneURI == nil) then
 lm("No java.net.URI object")
 return
 end

 local intentClass = luajava.bindClass("android.content.Intent")
 if(intentClass == nil) then
 lm("No intent class")
 return
 end

 local intent = luajava.newInstance("android.content.Intent",
 intentClass.ACTION_CALL, phoneURI)
 if(intent == nil) then
 lm("No intent object")
 return
 end

 lm("Calling " .. number)
 na:startActivity(intent)
end

This example demonstrates how to create a new instance of a nested inner class of a Java
class. This example gets media metadata from the android.provider.MediaStore.Audio.Media class,
which is a nested class of android.provider.MediaStore.Audio, which in turn is a nested class of
android.provider.MediaStore.

 -- In order to pass array's to any of the Android Java API's we must explicitely create
 -- a Java array from a Lua table and this function covers that work.
 function make_array(dataClass, values)
 local arrayClass = luajava.bindClass("java.lang.reflect.Array")
 if(arrayClass == nil) then
 print("Can't get array class")
 return nil

Scripting with Lua

205

 end

 local newTypedArray = arrayClass:newInstance(dataClass, #values)
 if(newTypedArray == nil) then
 print("Can't get array class")
 return nil
 end

 for i=1,#values do
 arrayClass:set(newTypedArray, i-1, values[i])
 end

 return newTypedArray
 end

 function get_album_files(album_id)
 if (luajava == nil) then
 return
 end

 if (luajava.bindClass == nil) then
 return
 end
 local na = luajava.nativeActivity()

 local mediastore = luajava.newInstance("android.provider.
 MediaStore$Audio$Media")
 local externalURI = mediastore.EXTERNAL_CONTENT_URI
 local columns = {}
 columns[1] = mediastore.TITLE_KEY
 columns[2] = mediastore.DURATION
 columns[3] = mediastore.TITLE

 local stringClass = luajava.bindClass("java.lang.String")
 local array = make_array(stringClass, columns)
 local where = mediastore.ALBUM_KEY .. "=?"
 local what = {}
 what[1] = album_id
 local whatArray = make_array(stringClass, what)

 local cursor = na:managedQuery(externalURI, array, where, whatArray, nil);
 local res = cursor_to_table(cursor)
 return res
end

206

Chapter 9. Storyboard IO
The Storyboard IO API provides a platform independent communication API that allows inter-task and
inter-process queued message passing. This is primarily used to allow external communication with a
Storyboard application.

Note

Storyboard IO was previously known as GREIO
The Storyboard IO API layers on top of native message passing and communication APIs, dependent on
the operating system:

Linux SysV message queue

MacOS SysV message queue

QNX QNX POSIX message queue (mqueue server or mq server/library)

Using the SBIO_MQ_PATH environment variable you can determine which
message queue technology will be used. By default the standard mqueue
server and corresponding C library mq_* functions will be used.

If the SBIO_MQ_PATH environment variable is set to point at the
libmq.so library (ie SBIO_MQ_PATH=/usr/lib/libmq.so) then the
default binding for the message queue implementation can be changed to use
the mq server and the corresponding mq library functions.

If the SBIO_MQ_PATH environment variable is used, then it must be
used consistently with all Storyboard IO clients and servers that want to
communicate with one another.

WinCE/WinCompact7 WinCE MSMQ

Win32 MS-Mailslots

The API provides transport delivery guarantees for messages that are placed into the queue regardless of
the implementation. The maximum transport size of a message and the total queue capacity varies slightly
from implementation to implementation however a 2K message size should be considered a design limit
with the practical implementation limit around a 4K message payload size.

Storyboard IO integration with the Storyboard Engine is implemented as a plugin. It is possible to create
alternate Storyboard IO implementations that take advantage of custom communication facilities available
on a platform.

The Storyboard IO plugin provides a single communication channel which clients can used to inject
events into the Storyboard application. These events will be queued and dispatched in the same manner
as internally generated events.

Client applications can use Storyboard IO to create their own communication channels and then receive
events from that channel from the Storyboard application or from any other Storyboard IO client.

Connecting to a Storyboard Application
In order to communicate with a running Storyboard application the external application must first attach
to the application's Storyboard IO channel. By default this channel is named after the deployment

Storyboard IO

207

bundle file (ie [bundlename].gapp), however the name of this channel can be customized by specifying
-ogreio,channel=newname as an option to sbengine. Alternatively, on some platforms, it is also
possible to set a GREIONAME environment variable to the channel name.

Once the channel name is determined, the connection to the channel can be established with the
gre_io_open() function. This will connect to the channel and return a handle that can be used for
future communication.

Once the application has determined that no further communication is necessary the channel should be
closed via the gre_io_close() function.

Sending Events to a Storyboard Application
Storyboard events contain string based names and a variable data field. For this reason the event data must
be serialized into a buffer for communication. The Storyboard IO API provides the functions needed to
both serialize your data and send the event. The event you wish to send must first be serialized via a call
to gre_io_serialize(). This will allocated a serialized data buffer for your event. The event can
then be sent via the gre_io_send() function. Once the event has been sent the buffer can be reused
or freed via a call to gre_io_free_buffer().

Note

Serialized buffers can be reused multiple times. The gre_io_serialize_buffer()
function will resize or reallocate the buffer if the data being serialized is larger than the existing
buffer. This is designed to cut down on repetitive memory allocation and deallocation churn.

Data parameters must be sent in order of descending alignment requirements. Example: 4u1 4u1
2u1 1s0 is good, 2u1 4u1 4u1 1s0 is not

gre_io_t *send_handle;
gre_io_serialized_data_t *nbuffer = NULL;
const char *event_data = "my event data"

/*
 * Connect to a channel to send messages.
 */
send_handle = gre_io_open("my_channel", GRE_IO_TYPE_WRONLY);
 if(send_handle == NULL) {
 printf("Can't open send handle [%s]\n", argv[1]);
 return 0;
}

/*
 * Send a named event containing no data payload
 */
nbuffer = gre_io_serialize(nbuffer, NULL,
 "my_event_name",
 NULL,
 NULL,
 0);

gre_io_send(send_handle, nbuffer);

Storyboard IO

208

/*
 * Send a named event with an additional string payload
 */
nbuffer = gre_io_serialize(nbuffer, NULL,
 "my_event_name",
 "1s0 data",
 event_data,
 strlen(event_data)+1);

gre_io_send(send_handle, nbuffer);

Setting Application Data
The Storyboard IO plugin provides the capability to set application variable values using the Storyboard
IO API, allowing external client programs to change data dynamically.

Clients can use the gre_io_add_mdata() function to serialize each variable value that is to be set. As
values are added to the serialized buffer, it will be grown until it reaches a maximum size for the transport,
at which point the gre_io_add_mdata() function will return -1 indicating it is full. The data can be
then sent by using the gre_io_send_mdata() function which will send the change request to the
Storyboard IO plugin and set the appropriate values in the Storyboard application.

Note

Data must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0 is
good, 2u1 4u1 4u1 1s0 is not

gre_io_t *send_handle;
gre_io_serialized_data_t *md_buffer = NULL;
uint32_t x;
char *ptr;
int ret;

/*
 * Connect to the application channel
 */
send_handle = gre_io_open("my_channel", GRE_IO_TYPE_WRONLY);
if(send_handle == NULL) {
 printf("Can't open send handle [%s]\n", argv[1]);
 return 0;
}

/*
 * Add some values to be set in the data manager
 */
ptr = "my string";
ret = gre_io_add_mdata(&md_buffer,
 "Test.String",
 "1s0",
 ptr, strlen(ptr)+1);

Storyboard IO

209

x = 1;
ret = gre_io_add_mdata(&md_buffer,
 "Test.Number",
 "4u1",
 &x, sizeof(uint32_t));

/*
 * Send the data to be set in the application.
 */
gre_io_send_mdata(send_handle, md_buffer);

Receiving Events from a Storyboard
Application

In order to receive events the from a Storyboard application, a client program must first create a receive
communication channel using the gre_io_open() function. This function takes the name of a channel
to create and the mode in which to open the channel, for reading or writing. Receiving clients must open
it for reading.

Once the communication channel is created, then the client program then must call gre_io_receive()
in order to receive and process events.

The client communication channel can be created in either a blocking or non-blocking mode. By default
the gre_io_receive() function will not return unless there is an event available or an error has
occurred.

Once an event has been received the data can be unserialized into its standard components using the
gre_io_unserialze() function.

char *name = (char *)arg;
gre_io_t *rhandle;
gre_io_serialized_data_t *buffer = NULL;
int ret;
char *revent_name;
char *revent_target;
char *revent_format;
uint8_t *revent_data;
int offset, i, rnbytes;

rhandle = gre_io_open(name, GRE_IO_TYPE_RDONLY);
if(rhandle == NULL) {
 printf("Can't open IO channel %s\n", name);
 return 0;
}

printf("Waiting on channel [%s]\n", name);
while(1) {
 ret = gre_io_receive(rhandle, &buffer);
 if(ret < 0) {
 printf("Problem receiving data on channel [%s]\n", name);

Storyboard IO

210

 break;
 }

 rnbytes = gre_io_unserialize(buffer,
 &revent_target,
 &revent_name,
 &revent_format,
 (void **)&revent_data);
 printf("Event Received [%s] on channel [%s]:\n", revent_name, name);
 printf(" Event Target: [%s]\n", revent_target);
 printf(" Event Format: [%s]\n", revent_format);
 printf(" Event Data (%d bytes):\n", rnbytes);
}

gre_io_close(rhandle);

Storyboard IO Utilities
Included with Storyboard Suite are some command line utilities that can be useful tools when working
with and configuring Storyboard IO. These utilities provide a very thing layer on top of the Storyboard IO
C API and can be used to verify that Storyboard IO is working properly on your platform.

iogen
The iogen utility is used to generate Storyboard IO events from the command line. The utility's
command line arguments closely mirror the arguments that would be provided to the gre_io_open
and gre_io_send Storyboard IO API functions. Running iogen without any parameters will show
a usage message:

Note

Data must be sent in order of descending alignment requirements. Example: 4u1 4u1 2u1 1s0 is
good, 2u1 4u1 4u1 1s0 is not

Usage ./iogen channel_name [event_target event_name size data [size data]...]

For example:
 Send a 'gre.quit' event to a client on channel 'sb'
 ./iogen sb no_target gre.quit

 Send a 'gre.press' event (int button, subtype, x, y) @ 100,150 to a client on channel 'sb'
 ./iogen sb some_target gre.press 4u1:button 0 4u1:timestamp 0 2u1:subtype 0 2u1:x 100 2u1:y
 150 2u1:z 0 2u1:id 0 2u1:spare 0

Send a 'progress' event with an integer field 'percent' containing the value 50 on a channel 'sb'
 ./iogen sb no_target progress 4s1:percent 50

Send a 'greio.vebosity' event with an integer field 'verbosity' containing the desired level of engine debugging verbosity
 ./iogen sb no_target greio.verbosity 4s1:verbosity 4

Storyboard IO

211

The iogen utility can also be used to set variables in a Storyboard application. To set a variable, the
event_target parameter should contain the fully qualified path for the Storyboard variable and the
event_name parameter should contain the SBIO event greio.iodata_set. For example:

Set an integer application variable 'progress' with a number (50)
 ./iogen sb progress greio.iodata_set 4s1 50

Set the text variable 'myvariable' on the control 'mycontrol' on the layer 'mylayer' with a string (Hello)
 ./iogen sb mylayer.mycontrol.myvariable greio.iodata_set 1s0 "Hello"

The definition and format of standard Storyboard events such as gre.press and gre.release can
be found in the Storyboard header file iodefs.h.

iorcv
The iorvc utility is used to receive Storyboard IO events. This utility takes an input channel name as
a command line parameter and prints the events it receives. Running iogen without any parameters
provides a usage message:

Usage ./iorcv [-s] channel_name

By default, iorcv will loop around receiving messages until the program is terminated. By specifying -
s you can cause iorcv to exit once it has received a single message.

When a message is received, a summary of the event contents is printed to the output:

% ./iorcv my_channel
Waiting on channel [my_channel]
Event Received [my_event_name] on channel [my_channel]:
 Event Target: [no_target]
 Event Format: []
 Event Data (0 bytes):

This would be the response to an event generated by iogen with the following arguments:

% ./iogen my_channel no_target my_event_name
Connecting to Storyboard IO channel [my_channel]

Storyboard IO API
The details the functions available in the Storyboard IO library, libgreio.a, are also documented in
the Storyboard IO header file gre/greio.h>.

gre_io_add_mdata

Storyboard IO

212

int gre_io_add_mdata(
 gre_io_serialized_data_t ** mbuffer,
 const char * key_name,
 const char * data_format,
 const void * data,
 int data_nbytes
)

Add a data change key/value pair to a serialized buffer. This call can be used to serialize multiple data
changes into a single Storyboard IO send operation to improve efficiency.

Once an multi-part data buffer is constructed, it can be sent using the gre_io_send_mdata function.

Parameters:

 buffer The buffer containing the serialized data
 key_name The data key which is to be set
 data_format The format for the data to be set
 data The data value to set
 data_nbytes The number of bytes used for the data

Returns:

 -1 on failure anything else is success

gre_io_close

void gre_io_close(
 gre_io_t * handle
)

Close an io connection. Any pending clients will return with an error on their pending actions.

Parameters:

 handle A valid handle created with gre_io_open()

gre_io_free_buffer

void gre_io_free_buffer(
 gre_io_serialized_data_t * buffer
)

This de-allocates the memory associated with a buffer created through the Storyboard IO API.

Storyboard IO

213

Parameters:

 buffer The buffer whose memory is to be de-allocated

gre_io_grow_buffer

void gre_io_grow_buffer(
 gre_io_t* handle,
 gre_io_serialized_data_t * buffer
)

This function attempts to expand the internal capacity of the Storyboard IO transport to ensure that the
payload contained within serialized buffer can be transmitted.

Note

This call is not supported by all platforms and may fail if the transport buffer can not be resized.

Parameters:

 handle The handle to the Storyboard IO channel to resize
 buffer The buffer whose capacity is to be matched by the transport

Returns:

 -1 on failure otherwise success

gre_io_open

gre_io_t* gre_io_open(
 const char * io_name,
 int flag,
 ...
)

Open a Storyboard IO communication channel using a named connection.

Parameters:
 io_name The name of the io-channel to use
 flags The mode you want to open the queue in
 Flags define how the connection is opend. Possible flags are:
 GRE_IO_TYPE_RDONLY: open read only, creating the channel if it doesn't exist
 GRE_IO_TYPE_XRDONLY: open for exclusive read, unlinking an existing channel and creating a new one
 GRE_IO_TYPE_WRONLY: open write only
 GRE_IO_FLAG_NONBLOCK: open non-blocking

Storyboard IO

214

Returns:

 Returns a valid Storyboard IO handle or NULL if no channel can be created.

gre_io_receive

int gre_io_receive(
 gre_io_t * handle,
 gre_io_serialized_data_t ** buffer
)

Receive a serialized event from a channel. By default this call blocks until an event is received
or until the channel is destroyed unless the GRE_IO_FLAG_NONBLOCK flag was passed to the
gre_io_open()call.

In order to receive events, the handle must have been opened for reading using one of GRE_IO_RDONLY
or GRE_IO_XRDONLY.

Parameters:

 handle A valid handle created with gre_io_open()
 buffer A pointer to a serialized buffer pointer. If the buffer is NULL then a new
 buffer is allocated otherwise the buffer provided is used to store the received event.

Returns:

 The size of the message received in bytes or -1 on failure.

When a data buffer is successfully received, the event specific content can be extracted by making a call
to gre_io_unserialize. The values returned by the unserialize call will be pointers directly into
the memory allocated to the data buffer. Clients can read and write to the extracted values (such as event
name, event format and data payload) directly as long as the serialized buffer is not re-used at the same
time. Any data from the event that needs to be maintained across calls to gre_io_receive must be
copied by the user before the serialized buffer is re-used.

gre_io_send

int gre_io_send(
 gre_io_t * handle,
 gre_io_serialized_data_t * buffer
)

Send a serialized event buffer to a channel. In order to send events, the handle must have been opened
for writing using GRE_IO_WRONLY.

Parameters:

Storyboard IO

215

 handle A valid handle created with gre_io_open()
 buffer A data buffer containing a serialized event

Returns:

 -1 on failure otherwise success.

gre_io_send_mdata

int gre_io_send_mdata(
 gre_io_t * handle,
 gre_io_serialized_data_t * md_buffer
)

Send a serialized buffer of mdata (data manager key/value pairs) to the handle. The handle must have been
opened for writing using GRE_IO_WRONLY.

Parameters:

 handle A valid handle created with gre_io_open()
 buffer A data buffer containing a serialized data

Returns:

 -1 on failure anything else is success

gre_io_serialize

gre_io_serialized_data_t* gre_io_serialize(
 gre_io_serialized_data_t * buffer,
 const char * event_addr,
 const char * event_name,
 const char * event_format,
 const void * event_data,
 int event_nbytes
)

Serialize individual event items (see gre/io_mgr.h) into a single buffer for transmission using
Storyboard IO.

Parameters:

 buffer The buffer that will contain the serialized data or NULL if a new buffer should be allocated
 event_addr The name of the event target, or NULL to send to the default target
 event_name The name of the event to send, or NULL to send an empty event
 event_format The format description of the data or NULL if no data is being sent

Storyboard IO

216

 event_data A pointer do the data to transmit, or NULL if no data is transmitted
 event_nbytes The number of data bytes to transmit, or NULL if no data is transmitted

Returns:

 A buffer with the serialized data or NULL on error. It may be necessary for the
 internal buffer to be re-sized or re-allocated if the new data payload is larger than the
 previous one is being serialized.

gre_io_size_buffer

gre_io_serialized_data_t* gre_io_size_buffer(
 gre_io_serialized_data_t * buffer,
 int nbytes
)

This function ensures that the specified buffer has enough internal storage capacity for a payload of nbytes
size. If the buffer is NULL or the existing capacity is not large enough then a new memory buffer will
be assigned to the buffer object.

Parameters:

 buffer The buffer to be sized, or NULL to allocate a new buffer
 nbytes The number of bytes this buffer should be able to support

Returns:

 A buffer with room for a message nbytes in size or NULL if the space could not be allocated

gre_io_unserialize

int gre_io_unserialize(
 gre_io_serialized_data_t * buffer,
 char ** event_addr,
 char ** event_name,
 char ** event_format,
 void ** event_data
)

Transform a serialized buffer into individual event items (see gre/io_mgr.h). The pointers returned
point back into the content of the serialized buffer so the buffer can't be de-allocated until clients are
finished referencing the event items returned from this call.

Parameters:

 buffer The buffer containing the serialized data

Storyboard IO

217

 event_addr Location to store the event target
 event_name Location to store the event name
 event_format Location to store the event format
 event_data Location to store the event data

Returns:

 The number of bytes in the event_data structure

gre_io_zero_buffer

void gre_io_zero_buffer(
 gre_io_serialized_data_t * buffer
)

This clears the internal byte count of the buffer, but does not de-allocate the buffer's memory.

Use this function to reset a buffer in between multiple calls to gre_io_serialize

Parameters:

 buffer The buffer to have its byte count cleared

218

Chapter 10. Storyboard 3D Support
3D Rendering Fundamentals

At the most basic level, rendering of 3D content is accomplished by using matrix and vector mathematics
to transform points and directions between various coordinate spaces.

Understanding a few of the underlying concepts will help a designer make informed decisions when
configuring 3D Model render extensions in Storyboard Designer. Below we will explain the coordinate
spaces that are applicable to 3D rendering in Storyboard and explain how they relate to the properties of
the 3D Model render extension.

World space is a three dimensional space that serves as the basis for defining all the other coordinate
spaces. The locations of the camera and model in the 3D Model render extension properties are coordinates
in world space. It is important to note that each 3D Model render extension instance references its own
model data and is effectively a 2D portal into a distinct three dimensional world.

In Storyboard, we define the default position and orientation of the camera to be at the origin of World space
and looking down the World space negative z-axis. There are 2 primary camera modes which determine
the effect of the Camera parameters on defining View space (also called Camera space).

In “Orbit” mode, the Azimuth and Elevation parameters first rotate View space around the World space y-
axis and x-axis (respectively). The camera X, Y, Z position then position the camera in this rotated space.
By defining View space using transformations in this order, we can achieve a neat effect. If we set only
the Z position of the camera, Azimuth and Elevation now spin the camera around the World space origin,
with the camera always looking toward the origin.

In “Fly” mode, the camera X, Y, Z position define the position of the origin (0,0,0) of View space within
world space. Azimuth and Elevation now rotate the View space around the y-axis and x-axis (respectively)
of View space. This allows a camera that can freely look “away” from the World space origin in any
direction.

You may notice in the above description that the above descriptions of Azimuth and Elevation are in terms
of y-axis and x-axis, and not the z-axis. In order to simplify rotations, Storyboard does not allow the camera
to be “rolled” along the View z-axis.

The 3D Model render extension takes as a parameter a single model file per instance. Storyboard
supports .obj and .fbx files as 3D model input. Since FBX file support is provided by a closed-source
library maintained by Autodesk. This library has support for limited number of platforms and architectures.
To help mitigate this limitation, and provide an opportunity for offline optimization of model data, FBX
files are converted on import to SSG (Storyboard Scene Graph) files.

The Scene Graph and Transformations
We support a hierarchical scene graph for defining a 3D scene. We define the Node to be the basic building
block. Currently a node may be a:

• Group

• Mesh

• Light

Storyboard 3D Support

219

All nodes inherit the transform (coordinate space) of their parent.

Groups define a set of children nodes, and a coordinate space which all children nodes inhabit.

The complete order of transformations within a Group node is the following:

• Inherited transform from parent

• Local (bind) transform from scene graph

• Deformation transforms

• Translation

• Rotation (around X-axis, followed by Y-axis and finally Z-axis)

• Scaling

Meshes and Lights are leaf nodes.

Meshes define:

• Geometry

• Material information related to portions of the geometry.

Lights may be one of 2 types:

• Directional, best used for modelling distant constant light sources, such as the sun

• Point (or omni-directional) lights, best used for lights that emanate from a position, such as a lamp, etc.

Material Support
We support the following attributes for a material applied to a section of geometry:

• Ambient color

• Diffuse color

• Specular color (and a specular exponent)

• Emissive color

• Alpha (transparency, 0.0 completely transparent, 1.0 completely opaque)

We also support a diffuse texture map, which is currently used as a texture source for both diffuse and
ambient color.

We store the following additional information, but do not have any support for rendering at this time:

• Reflectivity coefficient

• Separate ambient map

• Specular map

• Emissive map

Storyboard 3D Support

220

• Bump map

• Normal map

• Reflection map (expected to take the form of plane, cube or spherical mapping of reflection information)

Animation Support
Information on what is possible with the FBX file format is included below, but the bottom line is that
almost all 3D Modeling DCC tools dispense with almost all of this structure and bake the movements
down into a single take/layer, so in Storyboard, for simplicity, we define a 3D scene animation to have:

• n Animation Channels, containing:

• n Animation Curves

Channels are defined as a node/transform pair, such as "FrontDriversSideDoor"/RX (x rotation). These
map to rows in the animation timeline in Designer.

Curves are defined by key frames, and include a key frame time and value for the transform. These will
map to the endpoints of Animation Steps in Designer.

Discussion on mapping FBX Animation data
into meaningful structures

Animation data specified in an FBX file for a scene takes the following structure:

• n Animation Takes, containing:

• n Animation Layers, containing:

• n Animation Channels, containing:

• n Animation Curves

Animation Takes (also called Stacks internally by FBX, but nowhere else it seems) define discrete
animations that you might want to play. These quite easily map to our concept of animation clips
in Storyboard Designer. Unfortunately, support for defining Animation Takes in many DCC tools is
somewhat limited, see the note below. You can think of a Take in the film sense, "Action! ... do stuff,
do stuff, do stuff... Cut!".

Animation Layers define a set of curves that you may want to play in parallel with another layer, allowing
you to essentially modulate the defined motion of another layer. An example would be a sphere moving
along a path (layer 1), while bouncing up and down (layer 2). These don't really map to anything in
Storyboard, we would likely just import multiple layers of animation motion into a single clip.

Even though Animation Layers have little meaning to us, they are important because they are the container
for a set of channels/curves.

Animation channels define what precisely we are deforming. These map to rows in our animation timeline.
An example here would be "FrontDriversSideDoor, X rotation".

Each channel as mentioned above has a set of Curves, which basically map to the ends of Animation Steps
in Storyboard. The curves are defined using key frames, with a time and a value.

Storyboard 3D Support

221

In reality, most DCC tools (except MotionBuilder), will require any use of layers to be baked down into a
single layer, and as mentioned above (and expanded on below), multiple takes are not natively supported
either.

Support for Animation Takes
While FBX files can have multiple animation takes embedded in a single file, 2 of the most popular DCC
tools, Maya and 3DS Max do not ship with the functionality to export the Animation Take data. These
tools have a single animation timeline, and export the animation data a single take.

Artists desiring to specify multiple animations relating to a single model or scene have a few options, but
all of them essentially defer defining this data to further down the asset pipeline.

The typical pipeline workflows are:

1. Export each separate animation into a separate FBX file. There are a whole bunch of problems with
this idea.

2. Export modelling data to Autodesk MotionBuilder (previously called FilmBox, the origin of the FBX
format) or another equivalent tool and use these to define the desired takes. These will import cleanly
into separate takes.

3. Max and Maya have a paid plugin (fairly inexpensive - $9 USD on TurboSquid as of the time of writing)
allowing the artist to define multiple takes from the Maya and Max animation timeline. These are fairly
simple tools, just defining a portion of the timeline to be each take, but are sufficient for most purposes.

4. Define all "takes" on a single timeline (with spacers between the desired takes) and export it as is. Use
tools from the target middleware (as in Storyboard Designer in our case!), if they exist, to "slice" the
animation into separate animations.

In order to support workflow 4, we would have to support the concept of slicing/splitting the incoming
animations. As of Storyboard 4.2, this functionality is not supported.

222

Chapter 11. Optimizing Your
Storyboard Application
Choosing the Right Image Format(s)

When creating an application the developer must define the target system screen resolution and color depth.
 This color depth information is used internally to decide how to create and render display elements in an
efficient manner. When adding images to the user interface it is always preferable to create them in the
desired color depth. If the application will be running in 16bit color then the most efficient image to render
will be a 16bit image. If alpha blending/transparency is not required when this image is rendered then it is
advisable to create images in the application color depth or at least remove the alpha channel in the image.

Frames Per Second
Setting you frames per seconds very high on a screen transition or animation might seem like a great
idea that will make your UI look better. However if your target system can't keep pace with the requested
frame rate the Storyboard Engine will simply drop the frames that is can't display and do extra work to
achieve a lower fps that may look even worse. Usually a frames per second of 14 will look good on simple
animations. The results can vary depending on what is being animated how long it is being animated for
and what the content it is being overlaid to is composed of so the best plan is to evaluate your design on
the target hardware and tune the settings appropriately.

Scaling Images
If you are only ever going to load an image once in you application don't scale the image, this is a
performance hit at image render time. It's far better to use you favorite image editor and resize the image
to exact size you intend to use it and turn the scale flag off.

Reducing Output Verbosity
Increasing the verbosity on sbengine is insightful when trying to track down behavioural issues and
to gain a better understanding of the system behaviour. However, don't forget to turn off the verbosity
for release since the process of outputting diagnostic messages to a console or serial terminal can cause
significant slowdown due to the limited bandwidth of the output devices.

Adjusting Engine Rendering Options
The Storyboard Engine provides a number of different global rendering defaults that can be adjusted via
command line options at execution time.

If your application contains a number of rotated images, then the -orender_mgr,quality option can
be used to trade between higher execution performance (0) and a better visual interpolation (3)

If your application is using an OpenGL renderer, then the -orender_mgr,multisample option can
be adjusted to favour less GPU consumption with less less anti-aliasing (0) or choose a smoother visual
presentation but longer to render (4+).

Optimizing Your
Storyboard Application

223

Memory
By default sbengine uses as much memory as it requires to load all the assets that the application requires
(images, fonts, scripts,...) but this can be tuned to save memory. Here are some options to help with this.

• Remove any unused plugins from the plugins directory if you are simply setting a directory for the
SB_PLUGINS environment variable.

• Set sbengine's resource_mgr options for image and font cache to appropriate values. Remember the
caches must be large enough to fit all the images and fonts for your most resource intensive screen.

• Use the Load Scaled flag in image render extension options if you are loading a scaled version of an
image (i.e. an image thumbnails screen). If you are only ever loading the image once you should resize
the image before deployment to avoid the runtime cost of image scaling.

Measuring Performance
Using the Storyboard logger plugin it is possible to capture metrics detailing various aspects of a
Storyboard applications performance. These metrics include screen, layer and control redraw times, action
execution times and general event processing times. If a performance log file is captured as and saved with
the file extension .plog (for performance log) then Storyboard Designer will automatically recognize it
and open up a log file viewer that provides an organized display of the performance events.

For more information on the performance monitoring plugin and its capabilities, refer to the Logger plugin
section of this document and the gra.perf_state action.

The Storyboard Embedded Engine runtime also provides a number of internal variables that can be used
at runtime to display performance information. The following Storyboard variables, can be used to extract
information from the runtime:

grd_fps (string, 1s0) The frame rate of display updates averaged over the last 5
seconds of display. This value is only generated if the -
oscreen_mgr,fps option is passed along to the sbengine
binary.

Storyboard display updates are entirely event driven, so unless
the application that is being run is continuously changing content
or generating redraw events such as is frequently done by
benchmarking applications, this value may not reflect the true
drawing performance of the system.

grd.animation.name (string, 1s0) The name of the last completed animation.

grd.animation.frames (number,
4s0)

The number of frames rendered for the last animation run.

grd.animation.duration (number,
4s1)

The duration in milliseconds (ms) of the last animation run.

This sample demonstrates how you can use a Lua script to extract and print these values to the display.

function show_metrics(mapargs)
 local fps_key = "grd_fps"

Optimizing Your
Storyboard Application

224

 local name_key = "grd.animation.name"
 local frame_key = "grd.animation.frames"
 local duration_key = "grd.animation.duration"

 local msg
 local data = gre.get_data(fps_key, name_key, frame_key, duration_key)

 -- FPS generated every 5s, assuming: -oscreen_mgr,fps
 if(data[fps_key]) then
 msg = string.format("Screen FPS: %d", data[fps_key])
 print(msg)
 end

 -- Animation data only available after animation complete
 if(data[name_key]) then
 msg = string.format("Animation %s took %d ms @ %d fps", data[name_key],
 data[duration_key], data[frame_key])
 print(msg)
 end
end

225

Chapter 12. Storyboard Software
Updates
Automatic Updates

Storyboard Suite updates for both Designer and the Engine are provided through an software update
installer within Storyboard Designer.

When Storyboard Designer starts it will automatically check for updates and then will probe every 4 hours
while running. Users can also force a check for updates from within Storyboard Designer by selecting
Help > Check for Updates in the main menu of Storyboard Designer.

If an update exists you will be notified to apply it and a wizard will guide you through download and
installation process. If both a Storyboard Designer and a Storyboard Runtime update is found the installer
will apply both updates in the same session.

Updates to Storyboard Designer will require a restart of your Designer application before they take affect.

Updates to Storyboard Engine will launch a secondary installer that will prompt you to install the new
Storyboard Engine runtimes into a default installation directory. You can install these runtimes anywhere
on your file system however the default is a labelled directory in the Storyboard Engine directory
of your Storyboard Suite installation.

Part II. Storyboard Design Tutorials

227

Table of Contents
13. Creating a Storyboard Project from a Sample .. 228

Creating a New Application using the Storyboard Samples ... 228
Import ... 228
Import Sample ... 228
New Sample Project .. 229

14. Working with Multiple Application Design Files ... 230
Creating a Project ... 230
Resolving Conflicts ... 234

15. Creating a 3D Model Application ... 235
16. Creating a Multi-Touch Application .. 241
17. Adding Extra Libraries for Android ... 244
18. Adding Extra Libraries for iOS .. 246
19. Crank Public SVN ... 247
20. Exporting a Storyboard Project ... 255
21. Importing a Storyboard Project ... 257

228

Chapter 13. Creating a Storyboard
Project from a Sample

There are a number of samples that are included with the Storyboard Suite distribution. These samples
provide demonstration of various rendering plugins and action bindings available with Storyboard.

Creating a New Application using the
Storyboard Samples

This quick start shows how to create a new Storyboard Application from a Storyboard Sample.

Import

Select File > Import. The Import dialog appears.

Select Storyboard Sample and click Next.

Import Sample

On the Import Storyboard Sample dialog, select the Sample to be used and click Finish.

Creating a Storyboard
Project from a Sample

229

New Sample Project
The Sample Application opens in the Storyboard Development perspective.

230

Chapter 14. Working with Multiple
Application Design Files

Storyboard Suite’s collaborative features help multiple users develop applications faster. You can merge
multiple files (*.gde) together and produce a single output during runtime. This tutorial explains how to
create a project with multiple application files.

Creating a Project
A project with multiple application files starts the same as a single application file project. Select » File »
New » Storyboard Application or create a new project using the Photoshop Import feature.

A project can accommodate multiple stand-alone applications that share project images and script
resources. You can add an additional application file to an existing project in multiple ways:

• Create a new file within an existing project by selecting » File » New » Storyboard Application and
choose to create a New Model in Existing Project

• Create a new file using the Photoshop Import feature and select the option to import .psd Into an
Existing Project as a New File.

• In the navigator view select and copy an existing application, then paste and rename the copied
application file.

For a multiple application project to function as a whole, application files need to reference one another.
Select the application from the Application Model View and in the Properties View, select Add external
model resource button. In the next dialog select the .gde file that was created in Step 2 and press OK.

Working with Multiple
Application Design Files

231

To add layers from an external model to a local application:

• Select the Import External Layer tab and then select Import Selected Layers.

• Choose the layer(s) to add to the current screen. After adding an external layer, Storyboard Suite will
recognize the external content and incorporate it to function like any other layer.

Working with Multiple
Application Design Files

232

To create a transition from a source application screen to an external application screen, add actions to an
application that perform a screen change.

Working with Multiple
Application Design Files

233

Before launching a multi-file application with the simulator, the external .gde files have to be referenced
in the Simulator Configurations dialog.

To manage the runtime configurations, select » Run » Storyboard Simulator Configurations. A list of
available models that can be included in the runtime export used with Storyboard Engine is in the selected
project folder. To apply changes, select » Apply and then » Run

Working with Multiple
Application Design Files

234

If no conflicts occur within the selected applications, they are merged and converted into a single unified
application at runtime. If conflicts exist, they must be resolved before the application can merge.

Resolving Conflicts
The application properties page provides an action to synchronize source content with referenced external
content. Any differences are flagged as a conflict and the user is prompted to resolve the conflict based
on the issue. Conflict types include:

Layers: If two or more layers have the same name their content needs to be identical.

Variables: Any application/global variables with the same name must have values that are the same.

Animations: If two or more animations use the same name then the animation needs to be identical.

Screens: Screens from all applications are compared. Two or more screens with the same name prompt
the user to resolve differences between the two.

235

Chapter 15. Creating a 3D Model
Application

This quick tutorial will show how to use the new 3D Model render extension with a new project

Select File > New > Storyboard Application.

Select Project name and click Finish.

Once the empty project loads add a control with a 3D Model render extension to the screen. Nothing will
show up in the render extension since a model file hasn't been selected.

Creating a 3D Model Application

236

Copy an OBJ file anywhere within the project. (The models for this tutorial were placed in the user created
models folder.)

Go to the 3D Model properties pane and either enter the location of the model or push the adjacent button
to browse the project for any OBJ files.

Creating a 3D Model Application

237

Once the model loads it might not be immediately visible. Right click on the control and select Resize >
Reset 3D Model. This is set some of the camera coordinates to make the model visible.

Creating a 3D Model Application

238

Further manipulation of the model properties may be needed in order to place the model in the desired
position. The following are the definitions of each of the model’s properties:

• filename - The name of the model to load.

• camera_position_x - The x position of the camera.

• camera_position_y - The y position of the camera.

• camera_position_z - The z position of the camera.

• azimuth - The rotation of the camera around the y axis in degrees.

• elevation - The rotation of the camera around the x axis in degrees.

• camera_field_of_view - The field of view the camera in degrees. The field of view specifies how much
of visual sphere is mapped to the control. A larger field of view is equivalent to using a wide-angle lens
on a camera, and a smaller field of view is equivalent to using a zoom lens.

• model_position_x - The x position of the model.

• model_position_y - The y position of the model.

• model_position_z - The z position of the model.

Creating a 3D Model Application

239

• model_orientation_phi - The rotation of the model around the x axis in degrees.

• model_orientation_theta - The rotation of the model around the y axis in degrees.

• model_orientation_psi - The rotation of the model around the z axis in degrees.

After setting the desired properties the model will automatically reposition itself.

Creating a 3D Model Application

240

241

Chapter 16. Creating a Multi-Touch
Application

This quick tutorial will show how to create a Storyboard Application that uses Android's multi-touch
support.

Select File > New > Storyboard Application.

Select Project name and click Finish.

Creating a Multi-Touch Application

242

Once the empty project loads, add two controls each with a Fill render extension. Along with the Fill add
a variable to both of the controls that stores a color. Set both of the Fills’ color argument to that variable
(In this case blue is used as the default).

Time to add actions. In order for the multi-touch to work correctly one must add actions for both single
touch and multi-touch. The single touch actions will be used when there is only one touch point, while
the multi-touch events will be used when there are two or more touch points. In this example we’ll use
the gre.mtpress/gre.press and gre.mtrelease/gre.release events with a DataChange action where we change
the color of the color variable for each of the controls (this way when you press and release the control its
color changes). This example uses red for when the control is pressed and blue for when it’s released.

Creating a Multi-Touch Application

243

Now you can export the example application as an Android APK and run it on a device. Press either of
the controls and watch their color change. This is all that's required to getting multi-touch events to work
with Storyboard on Android.

Enabling Multi-Touch

The -ogesture,mode=multi option needs to be passed to the Storyboard Runtime Options when
exporting an Android apk from Storyboard Designer.

244

Chapter 17. Adding Extra Libraries for
Android

Sometimes a user creates a Storyboard app that requires a library that isn't included with the Storyboard
Runtime. When exporting for Android we need to tell the exporter which libraries to preload. We do this
by giving the exporter a text file with a list of libraries. Make sure that the paths to these libraries are
relative to the Storyboard app’s directory. As well, the order of the libraries in the list determine the order
they get loaded in, therefore if one of the libraries has a dependency on another library make sure to have
the dependent library higher in the list.

The example we’ll use is modifying the FilesystemExplorer app from the Crank Software public
repository. In order for this app to work on android we’ll need to include the LuaFileSystem module that's
been compiled for android (the lib's name is lfs.so). We’ll add this file in scripts/android-armle.

Create a text file, which we’ll call user_libs.txt, with the following contents:

When exporting the app make sure to include the path to this file and hit finish.

Adding Extra Libraries for Android

245

Now the app can make use of the functionality included in the new library.

246

Chapter 18. Adding Extra Libraries for
iOS

Users can also add additional libraries that aren't included in the runtime to an exported iOS application.
Similar to Android, Storyboard needs to know about them beforehand so that we can pass them through
the code signing process. To do this, create a text file called user_libs.txt that contains any folder names
as strings that lead to added libraries that we need to check for signing. The folders should be placed at
the project root. This text file should also be placed in the root of the project. A valid setup looks like this:

Now that your libraries have been signed and are available for use, if you need to access them through Lua
you can do so using the helper variable gre.SCRIPT_ROOT. You can look at the generated .app file to
determine the script root relative path to your library folders, which will be located at the root of the .app
folder. That path needs to then be appended to the package.cpath variable in Lua using a semicolon. In
the above example, it would look like this:

247

Chapter 19. Crank Public SVN
Installing Subclipse and connecting to the Crank Software public repository

Before we are able to start using the demos from the public Crank code repository we will first need to
install a SVN client. To do so in Storyboard Designer we go to Help -> Install New Software.

Here at Crank we use Subclipse. Click on Add and for Name you can enter anything you please. To keep
it simple we will use Subclipse. For Location enter http://subclipse.tigris.org/update_1.10.x. Click OK.

After you click OK you will be presented with a list of software to install. There is no need for Mylyn
so you can uncheck it. Click Next.

Crank Public SVN

248

Details of the software to be installed. Click Next.

Accept license agreements. Click Finish.

Crank Public SVN

249

Software installation progress.

Generic warning that the software being installed is not signed. Click OK.

After the Subclipse svn client is installed you will need to restart Storyboard Designer. Click Restart Now.

Crank Public SVN

250

Now that Subclipse is installed we need to go to that perspective to add a repository.

Select SVN Repository Exploring. Click OK.

Crank Public SVN

251

To add a repository we simply right click in the SVN perspective window and select New -> Repository
Location.

Enter the Crank public code repository URL http://www.cranksoftware.com/repo/storyboard/public Click
Finish. When you are prompted for a username and password use storyboard and crankrocks.

Crank Public SVN

252

You are now connected to the Crank Public Repository. By expanding the directories you can see the
different demos available for checkout.

Crank Public SVN

253

To checkout from the repository you right click on the demo and select Checkout. Once completed click
on the Storyboard Development tab to see the application in your workspace.

Crank Public SVN

254

255

Chapter 20. Exporting a Storyboard
Project

Storyboard Designer gives you the ability to export your project for either archiving, sharing or demo
purposes. Here are a couple of easy steps showing you how to do that.

When your Storyboard Project is complete and you are ready to export, right click on the project folder
and select Export.

Next you will be presented with the Export Selection dialogue. Expand General by clicking on the triangle
to the left of the folder. Select Archive File and then click Next.

Exporting a Storyboard Project

256

Next you will see the Export Archive file box. Here you will see all the folders and files that will be
included in the archive you are about to create. Browse to the location where you want to save and then
provide a name for your archive. Review and verify your Options and then click Finish.

257

Chapter 21. Importing a Storyboard
Project

Here are a couple of easy steps to import a Storyboard Project Archive into Storyboard Designer.

Right click within the Navigator view or left click File from the top menu and select Import.

Next you will be presented with the Import Selection dialogue. Expand General by clicking on the triangle
to the left of the folder. Select Existing Projects into Workspace and then click Next.

Importing a Storyboard Project

258

Check the Select archive file: radio button and then Browse to the Storyboard Project Archive. Click Finish
to import the archive into your workspace.

Importing a Storyboard Project

259

Part III. Storyboard Target Tutorials

261

Table of Contents
22. Linux ... 262

TI AM355 Starter Kit .. 262
Step 1: Importing A Storyboard Sample .. 262
Step 2: Exporting A Storyboard Application .. 264
Step 3: Selecting The Storyboard Embedded Engine .. 266
Step 4: Configuring The Target Platform ... 267
Step 5: Running The Storyboard Application .. 267

262

Chapter 22. Linux

TI AM355 Starter Kit
The AM335x Starter Kit (EVM-SK) provides a stable and affordable platform to quickly start evaluation
of Sitara™ ARM® Cortex™-A8 AM335x Processors (AM3352, AM3354, AM3356, AM3358) and
accelerate development for smart appliance, industrial and networking applications. It is a low-cost
development platform based on the ARM Cortex-A8 processor that is integrated with options such as Dual
Gigabit Ethernet, DDR3 and LCD touch screen.

The following steps describe how to take a Storyboard sample and place it down on the TI AM335 board.
It is assumed that the TI AM335 board has been setup correctly running Linux and that it is connected via
a serial cable to either a laptop or desktop computer.

Step 1: Importing A Storyboard Sample
To import a Storyboard sample the user can right-click within the navigator view and select Import.

In the Select dialog expand the Storyboard Development folder and select Storyboard Sample.

Linux

263

In the Import Sample dialog any sample can be used but for the purposes of this example the Trend sample
has been selected.

Linux

264

Step 2: Exporting A Storyboard Application

Once a Storyboard application is complete and ready to be placed on a target platform, it needs to be
exported from Storyboard Designer in a format that the Storyboard Embedded Engine can use. Right-click
the Storyboard applications's .gde file, located in the project folder in the Navigation View, and select
Storyboard Export -> Export Storyboard Embedded Engine.

Linux

265

The Export Selection dialog is used to tell Storyboard Designer where to export the selected Storyboard
Application. Leaving the "Use same directory as selected model file" option checked will place the data
bundle, for Storyboard Embedded Engine, into the applications project directory. Deselecting the option
enables the date bundle to be placed else where. i.e. - usb drive, NFS mount etc. For the purpose of this
example the Storyboard application will be exported to a usb drive attached to the laptop/desktop.

Linux

266

Step 3: Selecting The Storyboard Embedded Engine

The Storyboard Embedded Engine is the optimized runtime component that resides on the target platform
that interprets the data bundle to display the Storyboard application. The Storyboard Embedded Engine is
categorized by operating system, system architecture, and rendering technology.

All the supported Storyboard Embedded Engines are shipped with Storyboard Suite and are located under
the Storyboard_Engine directory.

To run the Storyboard application on the TI AM335 a Linux, Armle, OpenGL ES runtime is required.
Copy the linux-codesourcery-armle-opengles_2.0-obj Storyboard Embedded Engine and place it on the
USB drive along with the Storyboard application that was just exported.

Linux

267

Step 4: Configuring The Target Platform
The USB drive with the Storyboard application along with the correct Storyboard Embedded Engine can
now be ejected from the laptop/desktop and connected to the TI AM335.

The following commands are to be executed within the serial terminal connected to the TI AM335.

Login to the TI AM 335 and mount the USB drive:

login: root

mount /dev/sda1 /mnt/usb

Now, the Storyboard SB_PLUGINS specific environmental variable and an addition to the
LD_LIBRARY_PATH environment variable need to be made:

export SB_PLUGINS=/mnt/usb/linux-codesourcery-armle-opengles_2.0-obj/
plugins

export LD_LIBRARY_PATH=/mnt/usb/linux-codesourcery-armle-opengles_2.0-
obj/lib:$LD_LIBRARY_PATH

Step 5: Running The Storyboard Application
With the needed environmental variables now set, the next step is to run the Storyboard application by
passing it to the Storyboard Embedded Engine.

/mnt/usb/linux-codesourcery-armle-opengles_2.0-obj/bin/sbengine /mnt/
usb/storyboard_export/trend.gapp

Part IV. Release Notes

269

Table of Contents
23. Release Notes 4.0 .. 270

Introduction .. 270
Storyboard Designer .. 270

Changes ... 270
Known Issues ... 270

Storyboard Engine ... 271
Changes ... 271
Known Issues ... 272

24. Release Notes 4.1 .. 273
Introduction .. 273
Storyboard Designer .. 273

Changes ... 273
Known Issues ... 274

Storyboard Engine ... 274
Changes ... 274
Known Issues ... 274

25. Release Notes 4.2 .. 276
Introduction .. 276
Storyboard Designer .. 276

Changes ... 276
Known Issues ... 277

Storyboard Embedded Engine .. 277
Changes ... 277
Known Issues ... 278

26. Release Notes 4.2.1 .. 279
Introduction .. 279
Storyboard Designer .. 279

Changes ... 279
Known Issues ... 279

Storyboard Embedded Engine .. 280
Changes ... 280
Known Issues ... 280

270

Chapter 23. Release Notes 4.0

Introduction
Welcome to the release of Storyboard 4.0

Storyboard Designer
The Storyboard Suite 4.0 release includes stability and performance enhancements. Storyboard 4.0 will
automatically convert Storyboard 3 and earlier workspaces and project files. Once converted to Storyboard
4.0 format, Storyboard projects are no longer compatible with Storyboard 3 and earlier projects.

In addition to these enhancements, the following changes have been made to Storyboard Designer and
Storyboard Embedded Engine.

Changes

Eclipse 4.x Update

Storyboard Designer is now using the Eclipse 4.x framework.

Lua Editor Updates

The Lua editor has been updated to include a number of productivity enhancements, including code auto
completion, code folding, jump to variable and function definitions, and documentation tool tips.

Lua debugging has been streamlined to allow one-click application debugging.

Control Rotation

Control rotation now supports alpha.

Relaxed Naming Conventions

We removed the restriction in Storyboard Designer that requires the name creation of elements to be unique
within the entire model space to only requiring name uniqueness at a peer level.

We've also provided the capability to name your render extensions.

Known Issues

Error When Updating or Installing Plugins

When Eclipse tries to update/install plugins, it doesn't request an escalation in privileges which causes
the update to fail with a strange error. Always run Storyboard Designer as administrator when doing an
update or installing plugins.

Require Mac OS X 10.8 or greater

Storyboard Designer requires Mac OS X 10.8 or greater due to the requirement by the Java 8 runtime
from Oracle.

Release Notes 4.0

271

Resource Cleanup tool

Images that are not referenced directly, but are pulled in at runtime-based on a Lua script action, will not
be identified as used by the Resource Cleanup wizard and may be removed accidentally.

Storyboard Engine
Storyboard Engine continues to move forward with the goal of providing our customers with a broad list
of supported targets.

Changes

Asynchronous Lua scripts

The enablement for OS thread level locking has been added to the Storyboard Lua distribution.

Control Groups

Control Groups has been added to rid the situation of placing many render extensions in the same control.
You now have the ability to group individual controls together.

Scrolling Layers

You now have the ability to scroll multiple controls on a layer with the same easy as table scrolling.

Layer Attributes

A layer's width and height can now be dynamically altered using gre.set_layer_attrs.

Circles and Arcs

Circles and arcs are now easier to create and manipulate in Storyboard.

QNX 6.6 Screen

Storyboard Embedded Engine has added support for QNX 6.6 screen.

Freetype Font Update

Our freetype font support has been updated to the latest version.

Green Hills Integrity

Storyboard now supports Green Hills Integrity Real-Time Operating System.

9-patch Image Support

9-patch support has been added to make scaling images on embedded applications easier.

Release Notes 4.0

272

Known Issues

Windows 8

Windows 8 will scale a Storyboard application to its resolution regardless of what the app was created to
be displayed at. Setting the "Disable display scaling on high DPI settings" in the compatibility section for
the Storyboard runtime will resolve the issue.

iOS 8.x

In order to export for iOS 8.x devices, users will need to have installed Xcode 6.1.1 and it's command
line tools.

273

Chapter 24. Release Notes 4.1

Introduction
Welcome to the release of Storyboard 4.1

Storyboard Designer
The Storyboard Suite 4.1 release includes stability and performance enhancements. Storyboard 4.1 will
automatically convert Storyboard 3 and earlier workspaces and project files. Once converted to Storyboard
4.1 format, Storyboard projects are no longer compatible with Storyboard 3 and earlier projects.

In addition to these enhancements, the following changes have been made to Storyboard Designer and
Storyboard Embedded Engine.

Changes

Animation Timeline Editing Enhancements

There have been a significant number of positive changes to the animation timeline to improve its usability
and aesthetics which include ...

• The ability to copy and paste entire rows of animation steps

• Use alignment controls on animation timelines

• Editing within the properties view

• Updated color coding to easily distinguish between animation elements

Application View Enhancements

Minor enhancements to the application model view have been made to improve productivity such as ...

• Double click to edit Lua Scripts

• Change Lua Script action label to include the Lua function name

• Double click the Action for editing to do something contextual

Properties View Enhancements

The properties view has been cleaned up to be less cluttered. Tabs have replaced the expanding shelves
making it easier to see what render extension is active and currently being modified.

Highlighting Groups

Groups are now highlighted upon selection in the Application Model or if they are ALT-selected in the
editor. The selection displays the outline of the group contents and allows for resizing. Groups are also
shown in the wireframe and outline mode.

Release Notes 4.1

274

Update PSD Workflow (aka PSD merge, update and sync)

A new page has been added to the PSD re-importer that allows the user to review and accept location
changes of re-imported images.

Color Picker Overhaul

The platform specific color selectors have been replaced with a new generic SWT based color picker.

Known Issues

Error When Updating or Installing Plugins

When Eclipse tries to update / install plugins it doesn't request an escalation in privileges which causes
the update to fail with a strange error. Always run Storyboard Designer as administrator when doing an
update or installing plugins.

Require Mac OS X 10.8 or greater

Storyboard Designer requires Mac OS X 10.8 or greater due to the requirement by the Java 8 runtime
from Oracle.

Resource Cleanup tool

Images that are not referenced directly, but are pulled in at runtime-based on a Lua script action, will not
be identified as used by the Resource Cleanup wizard and may be removed accidentally.

Storyboard Engine
Storyboard Engine continues to move forward with the goal of providing our customers with a broad list
of supported targets.

Changes

Windows Multi-Touch and Gesture Support

Multi-touch support has been added via the winevent plugin that extends the normal windows event
processing loop to support multi-touch event processing.

Gesture Plugin

A configurable threshold to the gesture plugin has been added. This will allow users to configure the
sensitivity of the motions to the resolution of their displays.

Known Issues

Windows 8

Windows 8 will scale a Storyboard application to its resolution regardless of what the app was created to
be displayed at. Setting the "Disable display scaling on high DPI settings" in the compatibility section for
the Storyboard runtime will resolve the issue.

Release Notes 4.1

275

iOS 8.x

In order to export for iOS 8.x devices, users will need to have installed Xcode 6.1.1 and it's command
line tools.

276

Chapter 25. Release Notes 4.2

Introduction
Welcome to the release of Storyboard Suite 4.2

This new version of Storyboard Suite introduces several major enhancements and a large number of
improvements and efficiencies:

Please note

Once a Storyboard Project has been converted to the Storyboard 4.x format, Storyboard projects are no
longer compatible with Storyboard 3 and earlier projects.

Storyboard Designer

Changes

New Installer

Storyboard Suite has a new installer. Fancy isn't it? We think so :)

3D Multi-Mesh Model Support via Autodesk FBX Content Importing

The Autodesk FBX file format is now supported as a 3D content import format in addition to the previous
support Storyboard had for Wavefront OBJ files. Scene objects can be manipulated direct by importing
the animations directly from the FBX file or by manually selecting individual node attributes.

3D Diagnostic Output

Added a new argument to the 3D render extension (-omodel3d,diag=n) that can be used to enable various
levels of diagnostic output.

Storyboard Designer Animation Preview

Animations can be previewed and single stepped within the Designer environment without having to
launch the complete application simulation. Animations can be designed and viewed in a variety of
different execution contexts to ensure proper applicability in all environments.

Animation Snapshots

Users have the ability to take snapshots (set keyframes) during animation recordings.

Designer Group Template Support

Groups can now be incorporated into Designer templates opening up a broad new range of functionality
that can be pre-packaged and used out of the box. Animations, images, 3D model content, timers and Lua
scripts can all be incorporated into template blocks and moved from project to project.

Release Notes 4.2

277

9-Patch Image Editing and Refactoring

Quickly analyze and convert existing large or scaled image content to nine-patch format to achieve
immediate memory and runtime performance improvements. Design and edit nine-patch images directly
in the Storyboard Design environment.

Integrated Search and Property Editing

Fast project refactoring through the use of customized search criteria and an expanded set of multi-selection
based property changes.

Android MultiTouch Support

The -ogesture,mode=multi option needs to be passed to the Storyboard Runtime Options when exporting
an Android apk from Storyboard Designer.

Re-order Screen Layout

Ability to re-order the layout/presentation of screens. Place associated screens close to one another so that
customers can move back and forth between them easily, compare them, etc.

Copy/Paste Layers

Copying and pasting layers is much easier by using the new Duplicate Layer action.

PSD Re-import Update

Added a new page to the re-import wizard that allows the user to review and import newly added controls
that were not included in the original import.

Known Issues

Require Mac OS X 10.8 or greater

Storyboard Designer requires Mac OS X 10.8 or greater due to the requirement by the Java 8 runtime
from Oracle.

Resource Cleanup tool

Images that are not referenced directly, but are pulled in at runtime based on a Lua script action, will not
be identified as used by the Resource Cleanup wizard and may be removed accidentally.

3D Model's Axis

3D model's axis no longer shows up when in the direct editing mode.

Storyboard Embedded Engine
Changes

Simplified Data Access

Write less glue logic and express your intent more succinctly with our improved Lua API's for UI variable
access and Storyboard IO array data transfer support.

Release Notes 4.2

278

Multitouch

The runtime options -omtdev,max_x and -omtdev,max_y have been deprecated. The max touch x and y
values are now automatically detected.

Known Issues

Texture Memory

"ERROR (1):ERROR: 505 : create_image_texture@2791" relates to running out of texture memory. Since
the texture is purged when the image resource gets released you can use the resource manager "image" pool
size option, i.e sbengine -oresource_mgr,image=4 your_app.gapp, to get around this issue. This option
enables you to manually set the image pool size. (By default sbengine will use all available memory) When
the image pool size is reached, older images are released to create room for newer images.

3D Layer Rotation

3D layer rotation does not respect alpha. When a 3D layer, that has transparency, is rotated it gets rendered
with a white fill.

9-Patch

9-Patch images currently can't be rotated.

Android

Storyboard Android crashes when accessing array values via the dot notation from the luajava bridge.

Cloned Control

Data does not get updated automatically in a cloned text control on a scrolling layer that is created off
screen using the win 32 runtime.

3D Models

3D models do not show up on some versions of Linux.

Linux Wayland Runtimes

The Linux Wayland runtimes do not support keyboards.

Flickering Graphics

Using the Yocto Jethro linux kernel (3.14) with the boundary devices branch for the nitrogen6x you might
encounter flickering graphics. If so, executing the following line resolves the issue ... echo 10 >/sys/
devices/soc0/backlight_lvds0.17/backlight/backlight_lvds0.17/brightness

279

Chapter 26. Release Notes 4.2.1

Introduction
Welcome to the release of Storyboard Suite 4.2.1

This release is a maintenance update to the 4.2 release focusing primarily on the runtime engine.

Storyboard Designer

Changes

Resize Dialog

The resize dialog has been re organized from a visual perspective to make it less cluttered.

Designer Scroll bars

Scroll bars have returned to the main editor.

Lua Debugger

Resolved an issue where the Lua Debugger would present errors when using the csv.lua script.

Designer Default Memory

Designer's default memory has been increased from 512M to 1G to help performance when working with
large images and 3D models.

Known Issues

Require Mac OS X 10.8 or greater

Storyboard Designer requires Mac OS X 10.8 or greater due to the requirement by the Java 8 runtime
from Oracle.

Resource Cleanup tool

Images that are not referenced directly, but are pulled in at runtime based on a Lua script action, will not
be identified as used by the Resource Cleanup wizard and may be removed accidentally.

3D Model's Axis

3D model's axis no longer shows up when in the direct editing mode.

Release Notes 4.2.1

280

Storyboard Embedded Engine

Changes

Performance

A number of enhancements have been made to Storyboard Embedded Engine to increase overall
performance. Circle controls were one of the areas that benefited from these changes as we saw an order
of magnitude in performance on some target platforms.

Memory Management

Memory management was another focus in this release. Changes were made that resolved some potential
memory leaks in areas such as Lua animations and cloned polygon controls.

General Bug Fixes

Many bug fixes are included with this release including Text wrapping, PNG decoding, Table resizing and
accessing array values in Android just to name a few.

Known Issues

Texture Memory

"ERROR (1):ERROR: 505 : create_image_texture@2791" relates to running out of texture memory. Since
the texture is purged when the image resource gets released you can use the resource manager "image" pool
size option, i.e sbengine -oresource_mgr,image=4 your_app.gapp, to get around this issue. This option
enables you to manually set the image pool size. (By default sbengine will use all available memory) When
the image pool size is reached, older images are released to create room for newer images.

3D Layer Rotation

3D layer rotation does not respect alpha. When a 3D layer, that has transparency, is rotated it gets rendered
with a white fill.

9-Patch

9-Patch images currently can't be rotated.

Linux Wayland Runtimes

The Linux Wayland runtimes do not support keyboards.

Flickering Graphics

Using the Yocto Jethro linux kernel (3.14) with the boundary devices branch for the nitrogen6x you might
encounter flickering graphics. If so, executing the following line resolves the issue ... echo 10 >/sys/
devices/soc0/backlight_lvds0.17/backlight/backlight_lvds0.17/brightness

Part V. Licensing

282

Table of Contents
27. END-USER LICENSE AGREEMENT .. 283
28. Crank Software Third Party License Guide ... 293

Introduction .. 293
Storyboard Designer .. 293

Lightweight Java Game Library ... 293
Storyboard Engine ... 294

Lua ... 294
SOIL ... 294
Option Parsing .. 295
XML Parsing .. 295
Imagination OpenGL libraries ... 296
FreeType library ... 296
Scanline edge-flag algorithm for antialiasing .. 298
General IFF format .. 299
GNU LESSER GENERAL PUBLIC LICENSE .. 299

Storyboard Engine Platform Specific Dependencies ... 301
All Simple Direct Media Layer (SDL) renderers ... 302
All Simple Direct Media Layer (SDL), OpenGL ES 2.0, and Fujitsu Jade renderers. 302

Fonts ... 302
Bitstream Vera .. 302
Bitstream Deja Vu ... 304
Liberation .. 305
Roboto .. 307
Lato .. 307

283

Chapter 27. END-USER LICENSE
AGREEMENT

The software and related documentation that you are about to access ("Software", as further defined
below) is offered to You (either an individual or a legal entity) by Crank Software Inc. ("Crank") of
4017 Carling Ave, Suite 302,Ottawa,,Ontario,Canada K2K 2A3 (voice: +1.613.595.1999) for use only in
accordance with the terms of the Storyboard End User License Agreement. Some Software components
have supplementary or alternative end user license terms, as noted below.

BY ANSWERING "I ACCEPT" DURING THE DOWNLOAD AND/OR INSTALLATION OF THE
SOFTWARE, OR OTHERWISE ATTEMPTING TO DOWNLOAD, COPY, INSTALL OR USE
ANY PART OF THE SOFTWARE, YOU ARE REPRESENTING THAT YOU HAVE READ,
UNDERSTOOD AND AGREE TO BE BOUND BY THESE TERMS AND AGREE TO PAY
ALL ASSOCIATED FEES. NOTHING ELSE GRANTS YOU PERMISSION TO COPY, USE OR
MODIFY THE SOFTWARE. THESE ACTIONS ARE PROHIBITED BY LAW IF YOU DO NOT
ACCEPT THESE TERMS, UNLESS YOU HAVE AN ALTERNATIVE SIGNED AGREEMENT
WITH CRANK. DO NOT PROCEED UNLESS YOU ARE ABLE AND WILLING TO ENTER INTO
THESE AGREEMENTS AND COMPLY WITH THESE TERMS. IF YOU HAVE ANY QUESTIONS
CONTACT CRANK BEFORE YOU ATTEMPT TO COPY, INSTALL OR USE ANY PART OF THE
SOFTWARE.

THE SOFTWARE MAY INCLUDE PRODUCT ACTIVATION AND OTHER TECHNOLOGY
DESIGNED TO PREVENT UNAUTHORIZED COPYING. THE ACTIVATION TECHNOLOGY
MAY PREVENT YOUR USE OF THE SOFTWARE IF YOU DO NOT FOLLOW THE ACTIVATION
PROCESS DESCRIBED IN THE SOFTWARE AND DOCUMENTATION.

If you do not agree to these terms and conditions, please click “I Decline” and promptly return or, if
received electronically, certify destruction of the Software and all accompanying items within five (5) days
after receipt of Software, and receive a full refund of any license fee paid.

Storyboard End User License Agreement

This Storyboard End User License Agreement (comprising Part A – Background , Part B - Standard
Terms and Conditions, and any documents incorporated by reference, collectively "this Agreement") is a
legal agreement between You and Crank, and is made effective as of the date of Your acceptance of this
Agreement, as defined above. The parties agree as follows.

Part A-Background

A1. Crank has developed and licenses Storyboard® Suite (“Storyboard Suite”), a software development
toolset for designing and executing graphical user interfaces for embedded systems. Storyboard Suite
consists of a number of individual software products and related collateral, including Storyboard
Designer and Storyboard Engine, Storyboard Browser and optional Storyboard software development kits
(sometimes refereed to as a"SDK"). Storyboard Suite includes a variety of software development tools,
including debuggers, libraries, headers, utilities, sample source code, a simulation engine, etc.

Embedded system developers, including any of its graphical designers, systems engineers or other
personnel will typically build the graphical user interface for Target System(s) using Storyboard Designer.
Storyboard Designer aids in the design, development, simulation and testing phases of this development.
Developers may add to their suite by selecting the desired "Software Development Kit" (sometimes
referred to as "SDK"), which provide a greater range of technology options and customization capabilities.

A2. This Agreement is intended to detail Your license rights to the Storyboard Designer and to any
SDK products that You order, to support Your Target System development, testing, support, maintenance

END-USER LICENSE
AGREEMENT

284

and enhancement efforts. Each individual from Your organization using the Software in any way must
be licensed to have an individual copy of the Software, regardless of whether the Software is used on
individual workstations or in a networked environment. The license fees for the Storyboard Designer
products are generally on a per developer basis. SDKs license fees are determined on a variety of bases,
depending on a customer's requirements. The specific license rights will be detailed on the License
Certificate provided to You for the Software. The Storyboard Engine is bundled with the Storyboard Suite
for Target System design purposes; the Storyboard Engine must be separately licensed for redistribution
within Target Systems.

A3. You may require one or more license keys or passwords from Crank to install and use the Software
("License Keys"). License Keys for evaluation or beta licenses may be time limited. All License Keys
are to be treated as Confidential Information of Crank in accordance with the provisions of Section B5
[Confidentiality].

Part B – Standard Terms and Conditions

B1. Definitions. In this agreement,

a. “Agreement” or “EULA” means this Storyboard End User License Agreement.

b. "Authorized Workstations" means in relation to the Software or a part of the Software, those
Workstations on which You have been authorized to install the Software or that part of the Software,

c. “Commercially Released” means formally released, generally available, and fully supported by Crank.
It explicitly does not include any software and/or collateral that Crank may make available from time-
to-time that has been noted as any of “experimental”, “engineering”, “beta”, “unsupported” or similar
terminology.

d. “Crank”, “we”, or “us” means Crank Software Inc.,

e. "Contractor" means an independent contractor performing services for your development project that
are substantially similar to those performed by You or Your employees;

f. "Derivative Work" means any work made by You, or for You by a Contractor pursuant to this
Agreement, that is a revision, modification, translation, expansion, extension, collection, condensation
or abridgement of any Software provided by Crank in source code form;

g. "Documentation" means any developer documentation, read-me files, release notes and License Guides
(see B2(g)) that are provided by Crank in or for the Software;

h. "License Certificate" means a Crank issued document which authenticates software licensed under this
Agreement. It will: include a License Key; specify the number of Authorized Workstations if other than
1; and provide other details contemplated by this Agreement.

i. “License Key” means license keys and/or passwords from Crank required to install and use the
Software.

j. "Software" means the object code and source code included in the Storyboard Suite for which You
received a valid License Certificate and that You license pursuant to this Agreement. It includes
associated Documentation and corresponding Software updates or supplemental releases that You are
entitled to receive and use under one of Crank's support plans.

k. "Target System" means any product into which any portion of the Storyboard Engine has been wholly
or partially integrated, and which: (1) significantly enhances the function and value of the Storyboard
Engine , and (2) has a substantially different principal purpose than that of the Storyboard Engine;

END-USER LICENSE
AGREEMENT

285

l. "Workstation" means an individual developer's workstation, laptop and/or home computer used to
perform Storyboard development, provided the Software is only used on one computer at a time;

m. “You” or “Your” means to the entity for whose benefit You act, which may be yourself as an individual,
a corporate entity or some other form of legal entity;

n. Other capitalized terms defined in any part of this Agreement will have their indicated meaning
throughout this Agreement.

B2. Software Development License, Restrictions and Requirements.

a. License Rights. Subject to the terms of this Agreement (including without limitation those specific to
third party software - see Section B2(g) [Third Party Software] below) - and payment of all applicable
license fees, Crank hereby grants to You for each applicable license purchased from Crank (or from
one of its authorized distributors) for Software to be used pursuant to this Agreement, a non-exclusive,
personal, non-sublicensable and non-transferable license to:

1. copy the Software as required to install it on and to follow normal back-up and archiving practices
for Authorized Workstations;

2. use, execute, display and perform the Software on the Authorized Workstations in accordance with
associated Documentation, for the purpose of developing, testing and maintaining Target Systems;

3. create Derivative Works of Software source code and, subject to the provisions of Section B5
[Confidentiality], copy, compile, link, use, execute, display and perform such Derivative Works
on Authorized Workstations in accordance with associated Documentation, for the purpose of
developing, testing and maintaining Target Systems; and

4. copy, link, use, execute, display and perform the Storyboard Engine, and the object code of any
Derivative Works created pursuant to (3) above, as required to install and use them: (i) on a
reasonable number of Target Systems solely for internal Target System development and testing
purposes; and (ii) on one Target System for demonstration, promotion, evaluation or training
purposes, provided that such copy is not left with third parties.

b. You may authorize Your Contractors to exercise any of the license rights in B2(a), provide that
You remain responsible to Crank for the performance of any obligations, and compliance with any
restrictions, required by this Agreement,

c. Time and other Limited Licenses. If You received Software under an evaluation, beta or other time-
limited license, Your rights in the Software may be further limited as contemplated in this EULA, on
the License Certificate You receive, or as otherwise specified at the time of download and Your license
rights in the Software will end when the term of Your license expires. Crank may, at its discretion,
include with the Software capabilities to remind You of the time limitations and to prevent You from
continuing to use the Software at the end of the term.

d. Educational License. If You received Software under an educational license, then Your license rights
in the Software

1. are limited to educational, academic, research, instructional, teaching and training purposes
(“Educational Purposes) only and expressly exclude rights for any commercial purposes;

2. under B2(a)(4)(ii) are amended to ten Target Systems for Educational Purposes and expressly not
for any commercial purposes;

3. may be further limited (including by time as indicated in section B.2(c)) as contemplated in this
EULA, on the License Certificate You receive, as otherwise specified at the time of download or as
otherwise specified in writing by Crank.

END-USER LICENSE
AGREEMENT

286

e. Ownership and Use Restrictions. Crank and its suppliers retain all right, title and interest in and to
the Software, including all intellectual property therein. All copies will be considered Software for the
purpose of this Agreement and shall remain the property of Crank and its suppliers. Without restricting
the generality of the foregoing, unless expressly permitted by this Agreement, by applicable law, or by
Crank in writing, You agree not to:

1. alter, remove, or cover any trademark, logo, proprietary or licensing notices, labels or marks in or on
any part of the Software, including in any "about" box, "flash" / "splash" screen or Documentation.
You agree to use reasonable efforts to ensure that all copies of the Software bear any notices, labels
or marks contained in or on the original;

2. copy, reproduce, publish, rent, lease, loan, or distribute the Software except as expressly provided
in this EULA;

3. use unauthorized license keys;

4. decompile, disassemble, decrypt, extract, unbundle, translate or otherwise attempt or assist others to
reverse engineer any part of the Software, including circumventing any License Key activation or
evaluation period expiry mechanisms, except as necessary, when permitted by an applicable law, to
correct defects or achieve interoperability with complementary programs, for Your purposes only,
but only if Crank has refused to provide the necessary information or assistance;

5. directly or indirectly export, import or transmit the Software to any country in contravention of the
laws of that country or the laws of Canada or the United States;

6. use the Software in a High Risk Application (see also Section B9[No High Risk Applications]).

f. Other Agreements / Products Required. For certainty, this EULA does not provide You with any rights
to distribute the Software, or the files and data Storyboard generates, on any Target Systems. Any such
right / entitlement would be the subject of a separate agreement with Crank. Any right to obtain support
for the Software is subject to You purchasing the applicable support products and the terms of Parts
C and/or D of this Agreement.

g. Ownership of Derivative Works. Subject to any underlying rights in the Software, and subject to any
Feedback provided under Section B2(f) [Feedback], You retain all right, title and interest in and to any
Derivative Works and application software that You develop pursuant to this Agreement.

h. Feedback. At Your option, Crank would like to get suggestions, comments or other feedback about
its products (i.e., regarding their utility, reliability, performance and Your user experience, as well
as any bug-fixes, features, functionality or enhancements You would like to see in future versions;
collectively "Feedback"). You agree that all Feedback is and shall be given entirely voluntarily and,
even if designated as confidential, will not create any confidentiality obligations for Crank. You agree
not to provide any Feedback that is subject to any third party intellectual property rights. If You
desire to license any of Your intellectual property to Crank You will not provide the intellectual
property information to Crank as Feedback, but rather, we will discuss the necessity of entering into
a separate agreement. In the absence of such an agreement, and in order to incorporate Feedback that
You provide, Crank requires, and You hereby agree, to assign and waive all right, title and interest
(if any) in and to any Storyboard-specific Improvements (as defined below), including any associated
intellectual property and moral rights, to and on behalf of Crank. In this paragraph "Storyboard-specific
Improvements" means any work-arounds, bug-fixes, features, functionality, enhancements or other
suggested improvements to the Software that You provide to Crank.

i. Third Party Software. Parts of the Software may contain third party code. When permitted such Software
is sublicensed to You under the standard terms of this Agreement or otherwise may be licensed to You
under amended or alternative terms. Those terms, and any Software authorship attribution and like

END-USER LICENSE
AGREEMENT

287

notices that Crank is obliged to provide to You, are referenced in the corresponding "License Guide",
which is included with the Software Documentation and is available through www.cranksoftware.com.

B3. Limited Rights

a. Evaluation Rights. Notwithstanding Section B2(a)[License Rights], Software provided under an
evaluation or time limited license (“Evaluation License”) may only be used for determining the
suitability of the Software for your intended Target System application. An Evaluation License does
not allow you to use the software for commercial development purposes.

b. Beta Code. As specified to You by Crank, the Software (or parts of it) may be code intended for
experimental testing and evaluation (“Beta Code”). For any code specified as Beta Code by Crank,
Crank grants to You a temporary, nontransferable, nonexclusive license for experimental use to test and
evaluate the Beta Code without charge for a limited period of time specified by Crank. This grant and
Your use of the Beta Code shall not be construed as marketing or offering to sell a license to the Beta
Code, which Crank may choose not to release commercially in any form. You agree to evaluate and test
the Beta Code under normal conditions. You are encouraged to contact Crank periodically during Your
use of the Beta Code to discuss any malfunctions or suggested improvements and upon completion
of Your evaluation and testing, to send to Crank a written evaluation of the Beta Code, including its
strengths, weaknesses and recommended improvements and this will be treated as Feedback pursuant
to Section B2(f) [Feedback].

B4. Activation, Audit and Reporting.

a. The Software require activation in order to order to install and certain machine-specific information is
sent ("Activation Information") to Crank at the time of activation and/or periodically thereafter. This
Activation Information may include but is not limited to software identification number, MAC address,
UUID, IP address, identification numbers set by manufacturers of hardware and/or identification
numbers related to the host operating system. During some instances of activation, you may be asked
for certain information such as your name, email address and company information. Other than the
information which you enter, Crank does not collect any personally identifiable information during
activation. Crank may collect Activation Information at any time and may use Activation Information
for the purposes of verifying compliance with the terms of this Agreement.

b. Crank may audit Your use and deployment of the Software for compliance with the terms of this
Agreement and may reference Activation Information in the course of such audit. You will reimburse
Crank for its reasonable out of pocket costs associated with this audit if it is determined Your use of the
Software does not conform with the terms of this EULA. Crank shall treat as confidential information
all of Your information gained as a result of any request or review and shall only use or disclose
such information as required by law or to enforce its rights under this Agreement or addendum to this
Agreement.

c. Crank may require that You provide Crank with a written report to verify Your compliance with the
terms of this license; the report will be signed by an individual authorized to bind You confirming the
accuracy of the report. Such a report could include, but would not be limited to the serial number of each
Software product You have licensed, the MAC address or other unique identifier of each computer on
which each Software copy is installed and confirmation that each developer has the Software installed
only on his/her Workstation.

B5. Confidentiality.

a. What is Not Confidential. The Software user interface is not confidential information and Crank
encourages You to tell others about / how others Crank products. We would rather You provide negative
feedback to us first so that we might have a chance to respond or fix the issue; however, we support Your
right to speak about our Software even if we don't agree with what You are saying. Most Documentation
is freely available on our web site and that which is available is clearly is not confidential.

END-USER LICENSE
AGREEMENT

288

b. What is Confidential. "Confidential Information" means any information provided by Crank in, with
or associated with the Software (1) in Software source code, (2) which is a License Key , or (3) in
a document clearly marked "Confidential" (or equivalent). Confidential Information does not include
any information which is publicly available, previously known to You or independently developed by
You without reference to the Confidential Information. You may use Confidential Information only
to exercise Your rights under this Agreement and it may not be disclosed except to those developers
who have Authorized Workstations. You will protect the Confidential Information of by using the same
degree of care, but no less than reasonable care, to prevent the unauthorized dissemination or publication
and unauthorized use of the Confidential Information as You use to protect Your own confidential
information of like nature. Your duty to protect Confidential Information disclosed to it will survive
termination of this Agreement indefinitely.

B6. Intellectual Property Indemnity.

a. Indemnity. Crank will defend You against any Infringement claims, and indemnify and hold You
harmless from any Infringement damages finally awarded, in any third party action against You based
on the reproduction or use of the Commercially Released Software in accordance with the terms of
this Agreement, provided that You give Crank prompt notice of, as well as all authority, information,
and assistance (at Crank’s expense) necessary or desirable to defend, such claims. In this Section B4.2
“Infringement” means: (i) infringement of copyright by the Software; or (ii) misappropriation of trade
secrets by Crank in relation to the Software; or (iii) infringement by the Software of any patent,

Crank has no liability to You if the Infringement claim is based upon: (a) the combination of Software
with any product not furnished by Crank; (b) the modification of Software other than by Crank; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that You make, use or sell; (f) any Beta Code contained in Software; (g) any
Software provided by Crank’s licensors or under an open source license who / which does not provide
such indemnification to Crank’s customers; (h) infringement of an patent that is required to implement
any technical standard, be it formal or informal; (i) infringement of a patent that requires a license not
provided by Crank as detailed in B10 (i) infringement by You that is willful. In the case of (i) You shall
reimburse Crank for its legal fees and other costs related to the action upon a final judgment. In this
section "technical standards" includes without limitation, standards/recommendations of ITU, IEEE,
ETSI, ISO, MPEG, CSS, DVD, JPEG, DivX, Dolby, AVC/H.264, ATM Forum, Frame Relay Forum,
SMPTE, ATSE, GSM, IETF, OpenGL, Posix, OpenVG, DirectFB, etc.

b. Remedy. With respect to any finding of Infringement, or any reasonable belief of Crank that
Infringement may occur, Crank will, at its sole expense and option: (1) procure for You the right to
continue using the infringing Software; (2) replace the infringing Software with non-infringing software
of comparable function; (3) modify the infringing Software to be non-infringing; or (4) if none of the
foregoing alternatives is reasonably available to Crank, terminate Your right to the Software, but only
to the extent necessary to avoid the Infringement. You will have the right to terminate all of Your rights
if You determine such partial termination renders Your remaining rights ineffective. Upon such full or
partial termination, Crank will refund to You, pro-rata to the extent of such termination, the license fees
paid by You that are associated with the terminated rights.

c. Entire Liability. This Section B6 states the entire liability of Crank and its licensors and Your sole
and exclusive remedy with respect to any alleged infringement of intellectual property rights by the
software.

B7. Limited Warranty.

a. Crank warrants that during the warranty period the Commercially Released Software, when properly
installed, will substantially conform to the functional specifications set forth in the applicable
Documentation. Crank does not warrant that Software will meet Your requirements or that operation of
Software will be uninterrupted or error free. The warranty period is 60 days starting on the day Crank

END-USER LICENSE
AGREEMENT

289

issues to you an invoice for the Software. You must notify Crank in writing of any nonconformity
within the warranty period. This warranty shall not be valid if Software has been subject to misuse,
unauthorized modification or improper installation.

b. CRANK’S ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT CRANK’S
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO
CRANK OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET
THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS
AGREEMENT. CRANK MAKES NO WARRANTIES OR REPRESENTATIONS WITH RESPECT
TO: (I) SERVICES; (II) SOFTWARE WHICH IS LICENSED TO YOU FOR A LIMITED TERM,
FOR EVALUATION PURPOSES OR LICENSED AT NO COST; OR (III) EXPERIMENTAL BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

c. THE WARRANTIES AND REPRESENTATIONS SET FORTH IN THIS SECTION B7ARE
EXCLUSIVE. EXCEPT AS EXPRESSLY PROVIDED HEREIN, THE SOFTWARE PRODUCTS
AND ANY SERVICES PROVIDED UNDER THIS AGREEMENT ARE PROVIDED "AS IS"
WITHOUT ANY WARRANTIES OF ANY KIND, INCLUDING IMPLIED WARRANTIES AND
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT. NOTHING STATED IN THIS AGREEMENT WILL IMPLY THAT THE
OPERATION OF ANY SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE OR THAT
ERRORS WILL BE CORRECTED. OTHER WRITTEN OR ORAL STATEMENTS BY CRANK,
ITS REPRESENTATIVES OR OTHERS DO NOT CONSTITUTE WARRANTIES OF CRANK.

B8. LIMITATION OF LIABILITY.

a. IN NO EVENT WILL CRANK OR ITS AFFILIATES, OR THEIR OFFICERS, EMPLOYEES,
AGENTS, SUPPLIERS, DISTRIBUTORS, OR LICENSORS, (COLLECTIVELY, CRANK AND ITS
REPRESENTATIVES) BE LIABLE TO YOU, YOUR CONSULTANTS, OR ANY OTHER THIRD
PARTY FOR ANY INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES
WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST REVENUE, LOST OR DAMAGED
DATA, OR OTHER COMMERCIAL OR ECONOMIC LOSS, ARISING OUT OF OR RELATING
TO ANY BREACH OF THIS AGREEMENT, ANY USE OR INABILITY TO USE SOFTWARE
PRODUCTS, OR ANY SERVICES PROVIDED OR INABILITY TO OBTAIN SERVICES, EVEN
IF CRANK HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE OR CLAIM.

b. IN NO EVENT WILL THE AGGREGATE LIABILITY OF CRANK AND ITS REPRESENTATIVES
FOR ANY DAMAGES ARISING OUT OF OR RELATING TO THIS AGREEMENT, WHETHER
IN CONTRACT, TORT, OR OTHERWISE, EXCEED THE TOTAL FEES YOU HAVE PAID
TO CRANK FOR USE OF THE SOFTWARE UNDER THIS AGREEMENT (WHICH TOTAL
FEES MAY BE ZERO). THE PROVISIONS OF SECTIONS B7(b) and (c) AND THIS SECTION
B8 SHALL SURVIVE AND APPLY NOTWITHSTANDING THE FAILURE OF ESSENTIAL
PURPOSE OF ANY LIMITED REMEDY.

B9. No High Risk Applications.Unless Crank has provided You with express written consent, the Software
may not be used in any application in which the failure of the Software could lead to death, personal injury,
or severe physical or property damage(collectively, "High-Risk Applications"), including but not limited
to the operation of nuclear facilities, mass transit systems, aircraft navigation or aircraft communication
systems, air traffic control, weapon systems, and direct life support machines. Crank expressly disclaims
any express or implied warranty or condition of fitness for High-Risk Applications.

B10. Third Party Licenses Required. Certain Software products noted in the License Guide provide
software for implementing products or systems that may require additional patent license rights. Further,
Crank only licenses to You the intellectual property interests in such Software that it owns, patent license
rights (if any) that it expressly identifies for such Software in the description of Software and developer
files, and any third party copyright interests in these software products. It is Your responsibility to

END-USER LICENSE
AGREEMENT

290

determine if You require, and to obtain as necessary, any additional rights, from patent owners / consortia,
before making, using or selling any infringing product or system that contains or uses such Software.

B11. Term and Termination

a. Term of this Agreement. This term of this Agreement will commence on the date of Your acceptance
of this Agreement, as indicated above, and will continue indefinitely thereafter until it expires or is
terminated in whole or in part under Sections B11(b)[Time Limited Licenses] or B11(c)[Termination].

b. Time Limited Licenses. The term of any Software evaluation, beta, trial or other time limited Software
license will expire on the earlier of: (1) the end of the applicable time-limited trial period, or (2) thirty
(30) days after notice from Crank.

c. Termination. You may terminate this Agreement at any time. It will be deemed to terminate immediately
if You fail to comply with any material term herein or if You fail to pay within thirty (30) days of receipt
of invoice (or such longer period as may be expressly permitted by Crank in writing) any license fees
invoiced by Crank for Software licensed pursuant to this Agreement.

d. Implication of Termination. The provisions of this Agreement that are expressed or by their sense
and context are intended to survive the termination of this Agreement will survive, including Sections
B2(c) [Ownership], B4 [Activation, Audit and Reporting], , B5 [Confidentiality], B6 [IP Indemnity],
B7 [Limited Warranty], B8 [Limitation of Liability], B9 [No High Risk Applications], B10 [Limited
Patent License] this Section B10 and Section B12 [General]. When this Agreement terminates or expires
for any Software product(s) Your associated license rights end and You agree to immediately destroy
all whole or partial copies of that Software that are in Your possession or control. Termination is
without prejudice to any right or remedy that may have accrued, or be accruing to either party prior
to termination.

B12. General

a. Entire Agreement. This Agreement, comprising Parts A, B and C, along with the License Guide and
any other terms expressly referenced by this Agreement (including third party terms referenced in the
License Guide), constitutes the entire agreement between the parties pertaining to its subject matter
and supersedes any prior or contemporaneous agreement, representation, statement, negotiation or
undertaking dealing with the same subject matter. No amendment, modification or waiver of any part of
this Agreement will be binding unless in a written document that expressly refers to this Agreement and
that is signed by both parties. Except as otherwise expressly contemplated in this Agreement, the terms
and conditions of this Agreement will prevail over any inconsistent or additional terms or conditions
of either party's purchase orders or invoices.

b. Assignment. Except as specifically allowed in this Section B12(b) or with Crank's written consent, you
may not assign this Agreement or your License rights to third parties. Upon written notice to Crank
and subject to the export restrictions in Section B2(h)[Use Restrictions], you assign this Agreement in
conjunction with a change of ownership, merger, acquisition, sale or transfer of all or substantially all
of your business. Any such assignee must provide Crank with prior written acknowledgement of their
acceptance of the terms of this Agreement and you must transfer Your License Keys to the assignee
and destroy all whole or partial copies of the Software and License Keys that are in Your possession or
control. Any other attempted assignment or delegation in violation of the foregoing will be void and of
no effect. This License will inure to the benefit of and be binding upon the parties and their respective
successors and permitted assigns.

c. Payment Terms. You will pay amounts invoiced, in the currency specified on the applicable invoice,
within 30 days from the date of such invoice, unless otherwise agreed upon in advance by Crank in
writing. Any past due invoices will be subject to the imposition of interest charges in the amount of one
and one-half percent per month or the applicable legal rate currently in effect, whichever is lower.

END-USER LICENSE
AGREEMENT

291

d. Governing Law. This Agreement will be governed by and construed in accordance with the laws in
force in the Province of Ontario, Canada without regard to the conflicts of laws provisions thereof. The
parties hereby irrevocably waive: (1) the provisions of the United Nations Convention on Contracts
for the International Sale of Goods, and (2) any right to a trial by jury regarding the resolution of any
dispute between the parties hereto arising out of or in connection with this Agreement.

e. Arbitration. The parties will attempt to settle any disputes in connection with this Agreement in good
faith. If the parties are unable to settle a dispute, it will be resolved by arbitration and finally settled
by a sole arbitrator under the provisions of the Arbitration Act (Ontario) and the National Arbitration
Rules of the ADR Institute of Canada, Inc. The arbitration shall take place in Ottawa, Canada and
arbitration proceedings shall be held in the English Language. The arbitrator shall have all powers
conferred on him or her by the Arbitration Act (Ontario), including the power to set or dispense with
any process, to award costs and to award injunctive relief. The decision of the arbitrator will be final
and binding on the parties. The prevailing party will be entitled to recover its costs and expenses from
the arbitration, including but not limited to reasonable attorney's fees. All information relating to any
dispute in connection with this License will be considered Confidential Information for the purpose of
Section B5 [Confidentiality].

Part C: STANDARD SUPPORT TERMS

C0. Background. This Part C: Standard Support Terms ("Part C"), together with the other terms and
conditions of this Storyboard EULA, provides the terms and conditions upon which Crank will provide
you with the maintenance and support services described below ("Standard Support") for the Software.
All defined terms in other parts of the Agreement will have the same meanings in this Part C.

C1. Subscription. Your Standard Support subscription applies to the Software, subject to your payment
when due of all applicable Standard Support subscription fees specified for the first subscription year
on your Software Invoice and subsequently on corresponding subscription renewal invoices. Standard
Support subscriptions: (i) are specific to Authorized Work Stations and Software products; and (ii) may
not be renewed once expired;

C2. Services. During your Standard Support subscription Crank will provide you with the following
services for the current version of the Commercially Released Software by delivering by phone, email
or the web assistance with: (i) installation and configuration issues; (ii) understanding the functionality
and behaviour of specific parts; (iii) isolating problems you encounter by verifying whether or not they
are errors; (iv) providing you with patches or work-arounds for known errors; and (v) submitting problem
reports for confirmed errors that do not have current solutions. Crank has the right to publish information
(including but not limited to work-arounds and fixes) relating to any issues you report for the benefit of
the Storyboard development community; we will not publish any details that would identify you or your
customers.

C3. Updates. During your Standard Support subscription Crank will provide you with access to Updates
for use under the terms and conditions of this EULA if the Update is made available without a new end user
license agreement, or under any new end user license agreement terms and conditions that are provided
with the Update. An “Update” means a new Software release version designated by a change to the minor
version number (i.e. n.1 to n.2) and such other versions as Crank at its discretion makes available under
Your Standard Support subscription.

a. General. For the purpose of this License, Updates: (a) may only be used if they are first made available
before you purchased the applicable License Certificate or during your corresponding Standard Support
subscription, (b) may not be shared with any other persons, unless they are entitled to use them under
their own Storyboard license, (c) do not include any major Software releases (e.g., Storyboard 2 to
Storyboard 3) unless they are designated as an Update by Crank, (d) do not include Crank products that
you have not licensed commercially (i.e. the availability of Beta Software will not entitle you to free
commercially released Software versions if additional license fees apply), and (e) do not include any
new components, technologies or features that require Crank to pay additional third party fees.

END-USER LICENSE
AGREEMENT

292

b. Development. Updates may only be used on Authorized Workstations for which corresponding
Standard Support fees have been paid.

C4. Standard Support Subscription Term. Each subscription is valid for Standard Support services for
one Authorized Workstation for one year. Your subscription will end on the anniversary of the first day
of the month following the date of your original Standard Support Invoice, unless you first renew your
subscription by delivering a purchase order to Crank for the applicable Standard Support fee(s) for the
next subscription year at least thirty (30) days prior to the expiry date. All subscription fees are due in
advance and are non-refundable. Crank has the right to withhold Standard Support if you have not paid
your subscription fees. Crank may cease to provide Standard Support for the Software upon twelve (12)
months prior notice.

Part D - PRIORITY SUPPORT SERVICES TERMS

D0. Background. This Part D: Priority Support Terms ("Part D"), together with the other terms and
conditions of this Storyboard EULA, provides the terms and conditions upon which Crank will provide
you with the priority support services described below ("Priority Support") for the Software. All defined
terms in other parts of the Agreement will have the same meanings in this Part D.

D1. Priority Support Services. Crank offers You the ability to define your own priority support plan, within
reason. You may purchase blocks of “Priority Support Hours” in advance and have Crank deploy resource
hours against these as required for your project. These Hours can be used in any manner which You and
Crank have agreed and will be deployed in accordance with these terms.

D2. Priority Support Hours. Priority Support Hours are available in fixed blocks of time over a fixed time
period. If the order for the Priority Support Hours does not specify a schedule for using these hours Crank
will make them available on a pro-rated weekly basis and will use reasonable efforts to accommodate
Your schedule and variance over the time period. Unless otherwise specified a block of Hours must be
used within one (1) year of purchasing same. We will let you know if your Priority Support Hours are
at risk of expiring.

D3. Delivery. Crank will deliver Priority Support services in a professional manner. This includes not
knowingly infringing any third party intellectual property rights. However, this is the extent of the
representations and warranties that we can offer to you under this Agreement. The services we provide will
otherwise be delivered on an “AS IS” basis. There are no other representations, warranties or conditions,
express or implied from us and the provisions of sections B8 [Limitation of Liability] apply to the provision
of these services.

293

Chapter 28. Crank Software Third Party
License Guide
Introduction

Crank Software incorporates certain third party software in our software suite. The license terms associated
with this software require that we give copyright and license information, and this Third Party License
Terms List (“TPLTL”) provides those details.

Storyboard Designer
These third party software components are used within the Storyboard Designer product.

Lightweight Java Game Library
The Lightweight Java Game Library http://lwjgl.org/is used to provide the 3D model rendering within
Storyboard Designer.

/*
 * Copyright (c) 2002-2007 Lightweight Java Game Library Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * * Neither the name of 'Light Weight Java Game Library' nor the names of
 * its contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://lwjgl.org/

Crank Software Third
Party License Guide

294

 */

Storyboard Engine
These third party software components are used within the Storyboard Engine product.

Lua
The Lua scripting engine (http://www.lua.org) is used by the Storyboard Engine runtime when the lua
plugin (libgre-plugin-lua.so) is loaded.

License for Lua 5.0 and later versions

Copyright © 1994-2008 Lua.org, PUC-Rio. Permission is hereby granted,
free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial portions of
the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

SOIL
The SOIL library (http://www.lonesock.net/soil.html) is used to load images for the Storyboard Engine
runtime. It is used on the following rendering platforms:

Win32 GDI
All OpenGL ES 2.0
All OpenVG
Linux fbdev
Fujitsu Jade

Jonathan Dummer
2007-07-26-10.36

Simple OpenGL Image Library

Public Domain
using Sean Barret's stb_image as a base

Thanks to:

http://www.lua.org
http://www.lonesock.net/soil.html

Crank Software Third
Party License Guide

295

* Sean Barret - for the awesome stb_image
* Dan Venkitachalam - for finding some non-compliant DDS files, and patching some explicit casts
* everybody at gamedev.net

Option Parsing
The getopt and getsubopt argument parsing functions are used by the Storyboard Engine runtime
and plugins.

Copyright (c) 1990, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:
This product includes software developed by the University of
California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

XML Parsing
The ezxml library (ezxml.sourceforge.net [http://ezxml.sourceforge.net]) provides the XML parsing
support for the Storyboard Engine runtime on all platforms.

Copyright 2004-2006 Aaron Voisine aaron@voisine.org

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

http://ezxml.sourceforge.net
http://ezxml.sourceforge.net

Crank Software Third
Party License Guide

296

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Imagination OpenGL libraries
The libEGL.dll and libEGLv2.dll libraries from Imagination Technologies are used in the win32
OpenGL based Storyboard Engine runtimes.

THESE LIBRARIES ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. CRANK AND ITS LICENSORS HEREBY DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THESE LIBRARIES, INCLUDING ALL
WARRANTIES, IMPLIED OR EXPRESS, OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL CRANK
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES WHATSOEVER, (INCLUDING,
WITHOUT LIMITATION, DAMAGES RESULTING FROM LOSS OF USE, DATA OR
PROFITS), WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORT
RELATED ACTION, ARISING OUT OF, OR IN CONNECTION WITH, OR IN
CONTEMPLATION OF THE USE OR PERFORMANCE OF THE LIBRARIES, EVEN IF CRANK
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

FreeType library
The FreeType Project's www.freetype.org [http://www.freetype.org]) library is used by the Storyboard
Engine for text rendering on all Linux, QNX, Windows, Mac OS platforms.

Portions of this software are copyright © <2011> The FreeType Project
(www.freetype.org). All rights reserved.

Legal Terms
===========

0. Definitions

 Throughout this license, the terms `package', `FreeType Project',
 and `FreeType archive' refer to the set of files originally
 distributed by the authors (David Turner, Robert Wilhelm, and

http://www.freetype.org
http://www.freetype.org

Crank Software Third
Party License Guide

297

 Werner Lemberg) as the `FreeType Project', be they named as alpha,
 beta or final release.

 `You' refers to the licensee, or person using the project, where
 `using' is a generic term including compiling the project's source
 code as well as linking it to form a `program' or `executable'.
 This program is referred to as `a program using the FreeType
 engine'.

 This license applies to all files distributed in the original
 FreeType Project, including all source code, binaries and
 documentation, unless otherwise stated in the file in its
 original, unmodified form as distributed in the original archive.
 If you are unsure whether or not a particular file is covered by
 this license, you must contact us to verify this.

 The FreeType Project is copyright (C) 1996-2000 by David Turner,
 Robert Wilhelm, and Werner Lemberg. All rights reserved except as
 specified below.

1. No Warranty

 THE FREETYPE PROJECT IS PROVIDED `AS IS' WITHOUT WARRANTY OF ANY
 KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
 BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
 USE, OF THE FREETYPE PROJECT.

2. Redistribution

 This license grants a worldwide, royalty-free, perpetual and
 irrevocable right and license to use, execute, perform, compile,
 display, copy, create derivative works of, distribute and
 sublicense the FreeType Project (in both source and object code
 forms) and derivative works thereof for any purpose; and to
 authorize others to exercise some or all of the rights granted
 herein, subject to the following conditions:

 o Redistribution of source code must retain this license file
 (`FTL.TXT') unaltered; any additions, deletions or changes to
 the original files must be clearly indicated in accompanying
 documentation. The copyright notices of the unaltered,
 original files must be preserved in all copies of source
 files.

 o Redistribution in binary form must provide a disclaimer that
 states that the software is based in part of the work of the
 FreeType Team, in the distribution documentation. We also
 encourage you to put an URL to the FreeType web page in your
 documentation, though this isn't mandatory.

Crank Software Third
Party License Guide

298

 These conditions apply to any software derived from or based on
 the FreeType Project, not just the unmodified files. If you use
 our work, you must acknowledge us. However, no fee need be paid
 to us.

3. Advertising

 Neither the FreeType authors and contributors nor you shall use
 the name of the other for commercial, advertising, or promotional
 purposes without specific prior written permission.

 We suggest, but do not require, that you use one or more of the
 following phrases to refer to this software in your documentation
 or advertising materials: `FreeType Project', `FreeType Engine',
 `FreeType library', or `FreeType Distribution'.

 As you have not signed this license, you are not required to
 accept it. However, as the FreeType Project is copyrighted
 material, only this license, or another one contracted with the
 authors, grants you the right to use, distribute, and modify it.
 Therefore, by using, distributing, or modifying the FreeType
 Project, you indicate that you understand and accept all the terms
 of this license.

Scanline edge-flag algorithm for antialiasing

Scanline edge-flag algorithm for antialiasing
Copyright (c) 2005-2007 Kiia Kallio kkallio@uiah.fi

http://mlab.uiah.fi/~kkallio/antialiasing/

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

Crank Software Third
Party License Guide

299

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Research Paper Reference: http://mlab.uiah.fi/~kkallio/antialiasing/ [http://mlab.uiah.fi/~kkallio/
antialiasing/].

General IFF format

Copyright (c) 2012 Sander van der Burg

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Source GitHub Repository: https://github.com/svanderburg/libiff [https://github.com/svanderburg/libiff].

GNU LESSER GENERAL PUBLIC LICENSE
POSIX Threads Library for Windows, WinCE, and Windows Compact 7

Version 3, 29 June 2007

Copyright 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version
3 of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined
Work as defined below.

http://mlab.uiah.fi/~kkallio/antialiasing/
http://mlab.uiah.fi/~kkallio/antialiasing/
http://mlab.uiah.fi/~kkallio/antialiasing/
https://github.com/svanderburg/libiff
https://github.com/svanderburg/libiff

Crank Software Third
Party License Guide

300

An “Application” is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The
particular version of the Library with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the
Combined Work, excluding any source code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code
for the Application, including any data and utility programs needed for reproducing the Combined Work
from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section
3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to
be supplied by an Application that uses the facility (other than as an argument passed when the facility is
invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application
does not supply the function or data, the facility still operates, and performs whatever part of its purpose
remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the
Library. You may convey such object code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library
and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do
not restrict modification of the portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the
Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice
for the Library among these notices, as well as a reference directing the user to the copies of the GNU
GPL and this license document.

Crank Software Third
Party License Guide

301

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the
Application with a modified version of the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate
properly with a modified version of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is necessary
to install and execute a modified version of the Combined Work produced by recombining or relinking
the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation
Information must accompany the Minimal Corresponding Source and Corresponding Application Code.
If you use option 4d1, you must provide the Installation Information in the manner specified by section 6
of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together
with other library facilities that are not Applications and are not covered by this License, and convey such
a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and
explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a
certain numbered version of the GNU Lesser General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Library as you received it does not specify a
version number of the GNU Lesser General Public License, you may choose any version of the GNU
Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU
Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the Library.

Storyboard Engine Platform Specific
Dependencies

The individual render managers implementation may have a dependency on third party libraries that may
not be included in the standard operating system platform libraries.

Crank Software Third
Party License Guide

302

The API of these libraries are used by the Storyboard Engine runtime, but the binary dependency is via
a shared object.

All Simple Direct Media Layer (SDL) renderers

SDL

Used for rendering http://www.libsdl.org

All Simple Direct Media Layer (SDL), OpenGL ES 2.0, and
Fujitsu Jade renderers.

zlib

Compression library, required by FreeType library http://www.zlib.net/

/* zlib.h -- interface of the 'zlib' general purpose compression library
 version 1.2.8, April 28th, 2013

 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu

*/

Fonts
Storyboard Designer includes a number of Open Source fonts that may be used in commercially deployable
products. The licenses for the specific fonts are provided here.

Bitstream Vera
The Vera*.ttf font files are covered by these license terms

http://www.libsdl.org
http://www.zlib.net/

Crank Software Third
Party License Guide

303

Fonts are (c) Bitstream (see below). DejaVu changes are in public domain. Glyphs imported from Arev
fonts are (c) Tavmjong Bah (see below)

Bitstream Vera Fonts Copyright ------------------------------

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying
this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or
sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of
one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or
characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts,
only if the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been
modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the
Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL
BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall
not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further
information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this
license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the
modifications to the Bitstream Vera Font Software, including without limitation the rights to use, copy,
merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font
Software is furnished to do so, subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of
one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or
characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts,
only if the fonts are renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

Crank Software Third
Party License Guide

304

This License becomes null and void to the extent applicable to Fonts or Font Software that has been
modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the
Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG
BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE
OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT
SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise
to promote the sale, use or other dealings in this Font Software without prior written authorization from
Tavmjong Bah. For further information, contact: tavmjong @ free . fr.

Bitstream Deja Vu
The DejaVu*.ttf font files are covered by these license terms

Bitstream Vera Fonts Copyright

The fonts have a generous copyright, allowing derivative works (as long as "Bitstream" or "Vera" are
not in the names), and full redistribution (so long as they are not *sold* by themselves). They can be be
bundled, redistributed and sold with any software.

The fonts are distributed under the following copyright:

Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying
this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute
the Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or
sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of
one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or
characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts,
only if the fonts are renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been
modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the
Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF

Crank Software Third
Party License Guide

305

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL
BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall
not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software
without prior written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further
information, contact: fonts at gnome dot org.

Liberation

Digitized data copyright (c) 2010 Google Corporation
 with Reserved Font Arimo, Tinos and Cousine.
Copyright (c) 2012 Red Hat, Inc.
 with Reserved Font Name Liberation.

This Font Software is licensed under the SIL Open Font License,
Version 1.1.

This license is copied below, and is also available with a FAQ at:
http://scripts.sil.org/OFL

SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007

PREAMBLE The goals of the Open Font License (OFL) are to stimulate
worldwide development of collaborative font projects, to support the font
creation efforts of academic and linguistic communities, and to provide
a free and open framework in which fonts may be shared and improved in
partnership with others.

The OFL allows the licensed fonts to be used, studied, modified and
redistributed freely as long as they are not sold by themselves.
The fonts, including any derivative works, can be bundled, embedded,
redistributed and/or sold with any software provided that any reserved
names are not used by derivative works. The fonts and derivatives,
however, cannot be released under any other type of license. The
requirement for fonts to remain under this license does not apply to
any document created using the fonts or their derivatives.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this license and clearly marked as such.
This may include source files, build scripts and documentation.

"Reserved Font Name" refers to any names specified as such after the
copyright statement(s).

"Original Version" refers to the collection of Font Software components
as distributed by the Copyright Holder(s).

Crank Software Third
Party License Guide

306

"Modified Version" refers to any derivative made by adding to, deleting,
or substituting ? in part or in whole ?
any of the components of the Original Version, by changing formats or
by porting the Font Software to a new environment.

"Author" refers to any designer, engineer, programmer, technical writer
or other person who contributed to the Font Software.

PERMISSION & CONDITIONS

Permission is hereby granted, free of charge, to any person obtaining a
copy of the Font Software, to use, study, copy, merge, embed, modify,
redistribute, and sell modified and unmodified copies of the Font
Software, subject to the following conditions:

1) Neither the Font Software nor any of its individual components,in
 Original or Modified Versions, may be sold by itself.

2) Original or Modified Versions of the Font Software may be bundled,
 redistributed and/or sold with any software, provided that each copy
 contains the above copyright notice and this license. These can be
 included either as stand-alone text files, human-readable headers or
 in the appropriate machine-readable metadata fields within text or
 binary files as long as those fields can be easily viewed by the user.

3) No Modified Version of the Font Software may use the Reserved Font
 Name(s) unless explicit written permission is granted by the
 corresponding Copyright Holder. This restriction only applies to the
 primary font name as presented to the users.

4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font
 Software shall not be used to promote, endorse or advertise any
 Modified Version, except to acknowledge the contribution(s) of the
 Copyright Holder(s) and the Author(s) or with their explicit written
 permission.

5) The Font Software, modified or unmodified, in part or in whole, must
 be distributed entirely under this license, and must not be distributed
 under any other license. The requirement for fonts to remain under
 this license does not apply to any document created using the Font
 Software.

TERMINATION
This license becomes null and void if any of the above conditions are not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

Crank Software Third
Party License Guide

307

FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER
DEALINGS IN THE FONT SOFTWARE.

Roboto
Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

This directory contains the fonts for the platform. They are licensed under the Apache 2 license.

Lato

Copyright (c) 2010, #Åukasz Dziedzic (dziedzic@typoland.com),
with Reserved Font Name Lato.

This Font Software is licensed under the SIL Open Font License, Version 1.1.
This license is copied below, and is also available with a FAQ at:
http://scripts.sil.org/OFL

SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007

PREAMBLE
The goals of the Open Font License (OFL) are to stimulate worldwide
development of collaborative font projects, to support the font creation
efforts of academic and linguistic communities, and to provide a free and
open framework in which fonts may be shared and improved in partnership
with others.

The OFL allows the licensed fonts to be used, studied, modified and
redistributed freely as long as they are not sold by themselves. The
fonts, including any derivative works, can be bundled, embedded,
redistributed and/or sold with any software provided that any reserved
names are not used by derivative works. The fonts and derivatives,
however, cannot be released under any other type of license. The
requirement for fonts to remain under this license does not apply
to any document created using the fonts or their derivatives.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this license and clearly marked as such. This may
include source files, build scripts and documentation.

Crank Software Third
Party License Guide

308

"Reserved Font Name" refers to any names specified as such after the
copyright statement(s).

"Original Version" refers to the collection of Font Software components as
distributed by the Copyright Holder(s).

"Modified Version" refers to any derivative made by adding to, deleting,
or substituting -- in part or in whole -- any of the components of the
Original Version, by changing formats or by porting the Font Software to a
new environment.

"Author" refers to any designer, engineer, programmer, technical
writer or other person who contributed to the Font Software.

PERMISSION & CONDITIONS
Permission is hereby granted, free of charge, to any person obtaining
a copy of the Font Software, to use, study, copy, merge, embed, modify,
redistribute, and sell modified and unmodified copies of the Font
Software, subject to the following conditions:

1) Neither the Font Software nor any of its individual components,
in Original or Modified Versions, may be sold by itself.

2) Original or Modified Versions of the Font Software may be bundled,
redistributed and/or sold with any software, provided that each copy
contains the above copyright notice and this license. These can be
included either as stand-alone text files, human-readable headers or
in the appropriate machine-readable metadata fields within text or
binary files as long as those fields can be easily viewed by the user.

3) No Modified Version of the Font Software may use the Reserved Font
Name(s) unless explicit written permission is granted by the corresponding
Copyright Holder. This restriction only applies to the primary font name as
presented to the users.

4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font
Software shall not be used to promote, endorse or advertise any
Modified Version, except to acknowledge the contribution(s) of the
Copyright Holder(s) and the Author(s) or with their explicit written
permission.

5) The Font Software, modified or unmodified, in part or in whole,
must be distributed entirely under this license, and must not be
distributed under any other license. The requirement for fonts to
remain under this license does not apply to any document created
using the Font Software.

TERMINATION
This license becomes null and void if any of the above conditions are
not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

Crank Software Third
Party License Guide

309

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM
OTHER DEALINGS IN THE FONT SOFTWARE.

	Crank Storyboard Suite
	Table of Contents
	Part I. Crank Storyboard Suite
	Chapter 1. Storyboard Suite Overview
	Introduction
	Compatibility with Previous Versions
	Storyboard Architecture
	Graphical Composition Elements
	Screens
	Layers
	Groups
	Controls
	Render Extensions

	Events and Actions
	Events
	Event Naming Conventions
	Event Format String

	Actions
	Action Naming Conventions

	Variables, Dynamic Content and the Data Manager
	Storyboard Naming Conventions
	Layer, Group and Control Data Variables
	Layer variables
	Group variables
	Control variables
	Table variables

	Maintaining State and Reacting to Changes
	Execution Pipeline
	Trigger Event
	Action Execution
	Focus
	Data Change
	Display Render

	Execution Environment
	Animations
	Animation Action
	Timer Keyframe Animations
	Screen Transition Animations

	Scripting
	External Communication (Storyboard IO)
	Performance Considerations

	Chapter 2. Storyboard Designer
	Introduction
	Designer Environment
	Storyboard Designer Workbench
	Anatomy of a Storyboard Designer Project
	Storyboard Simulator

	Storyboard Designer Editor
	Editing Content
	Editor Toolbar
	Direct Editing

	Storyboard Designer Views
	Actions View
	Application Model View
	Animation Timeline View
	Working with Animations
	Record Animation
	Add Animation
	Preview Animation

	Images View
	Layers View
	Navigator View
	Outline View
	Problems View
	Properties View
	Templates View
	Variables View
	Variable Creation
	Generating Events on Variable Change

	Notes View

	Creating a Storyboard Designer Project
	New Storyboard Application
	Photoshop PSD File Import
	How Photoshop Content Will Import to Storyboard
	Storyboard Embedded Engine Import
	Existing Project Import

	Storyboard Designer Development
	Simulating and Exporting an Application
	Simulating an Application
	Exporting to a Storyboard Embedded Engine
	Exporting as a Native Android Application

	Translation and Internationalization
	Creating and Editing Translation Content

	OpenGL ES 2.0 Custom Shader, 3D Model and Compressed Texture Support
	Custom Shader
	Compressed Textures

	Working With Templates
	Working with Multiple Application Design Files
	Getting Started
	Integrating Application Content
	Simulating and Exporting Multiple Model Files
	Resolving Conflicts and Synchronizing Changes

	Circles and Arcs
	9-Patch
	Groups
	Scrolling Layers
	Target Configuration
	iOS Devices
	Xcode
	iOS Developer Account
	Code Signing Certificate
	Device IDs
	Application IDs
	Provisioning Profile

	User Defined Actions
	User Defined Render Extensions
	Photoshop Re-Import Feature

	Storyboard Designer Utilities
	Design Notes
	GoTo Dialog
	Storyboard Search Dialog
	Resize Storyboard Application
	Resource Clean Up Wizard
	Consolidate Images Wizard
	Trim Images Wizard
	Split Images Wizard
	Merge Control Images

	Collaboration and Team Development
	Revision Control System Integration
	Comparing and Merging Model Files
	Comparing and Merging Projects

	Chapter 3. Storyboard Engine
	Introduction
	Target Configuration
	Application Files
	Setting up Storyboard Engine
	Running Storyboard Engine
	Command line Options
	Engine Manager Options

	Plugins
	Gesture
	Multi-Touch Gestures

	Custom Shader Support
	Font Environment Variable
	System Specific Requirements
	Linux FBDEV x86, armle
	Requirements:
	Libraries:

	Microsoft WinCE, Compact7 win32, armle
	Requirements:
	Libraries:

	Yocto Jethro Linux kernel (3.14) OpenGL, FBDEV, armle
	Requirements:

	Chapter 4. Storyboard Media
	Introduction
	Media Actions
	gra.media.new.audio
	gra.media.new.video
	gra.media.volume
	gra.media.seek
	gra.media.stop
	gra.media.playpause

	Media Events
	gre.media.exit
	gre.media.timeupdate
	gre.media.statechange
	gre.media.complete
	gre.media.error

	Media backends
	gstreamer-backend
	Gstreamer pipeline
	External render extensions

	Chapter 5. Event Definitions
	Standard Event Definitions
	System Events
	gre.init
	gre.quit
	gre.redraw

	Pointer Events
	gre.press
	gre.release
	gre.touch
	gre.mtpress
	gre.mtrelease
	gre.inbound
	gre.outbound

	Keyboard Events
	gre.keydown
	gre.keyup

	Screen Manager Events
	gre.screenshow.pre
	gre.screenshow.post
	gre.screenhide.pre
	gre.screenhide.post

	Focus Events
	gre.gotfocus
	gre.lostfocus

	Table Events
	gre.table.viewport
	gre.cell.gotfocus
	gre.cell.lostfocus

	Table Scroll Events
	gre.table.drag_start
	gre.table.drag_stop
	gre.table.scroll_start
	gre.table.scroll_stop
	gre.table.scroll_cancel

	Layer Scroll Events
	gre.drag.start
	gre.drag.stop
	gre.scroll.start
	gre.scroll.stop
	gre.scroll.cancel

	Mobile Events (Android and iOS)
	gre.mobile.on_pause
	gre.mobile.on_resume
	gre.mobile.on_background

	Android Events
	android.onBack

	Windows Embedded Compact 2013 (WEC2013) Events
	win.gesture.pinch
	win.gesture.[up|down|left|right|unknown]

	Plugin Specific Event Definitions
	gre.gesture.up
	gre.gesture.down
	gre.gesture.left
	gre.gesture.right
	gre.screendump.complete
	timer.[name] Timer Events
	gre.animate.complete.[name] Animation Events
	gre.rendermgr.error

	Chapter 6. Action Definitions
	Built-in Action Definitions
	gra.screen
	gra.screen.fade
	gra.screen.hold
	gra.screen.release
	gra.sendevent
	gra.datachange
	gra.screen.focus.set
	gra.screen.focus.next
	gra.screen.focus.prev
	gra.screen.focus.direction
	gra.table.scroll
	gra.table.resize
	gra.table.navigate
	gra.log
	gra.resource.dump_def
	gra.playback

	Plugin Action Definitions
	gra.lua
	gra.animate
	gra.animate.stop
	gra.audio
	gra.greio
	gra.perf_state
	gra.redirect
	gra.screen.path
	gra.screen.scale
	gra.screen.glswitch
	gra.screen.glrotate
	gra.screen.glflip
	gra.screen.gldoors
	gra.screen.gltip
	gra.screen.glcube
	gra.screendump
	gra.timer

	Chapter 7. Render Extension Definitions
	Common Render Extension Options
	Render Extension Alignment

	Fill
	Fill Render Extension Options

	Polygon
	Polygon Render Extension Options

	Rectangle
	Rectangle Render Extension Options

	Image
	Image Render Extension Options
	Image Alignment

	Text
	Text Render Extension Options

	External
	External Render Extension Options

	3D Model
	3D Model Render Extension Options

	Chapter 8. Scripting with Lua
	Lua Function Parameters
	Passing Extra Parameters to Functions
	Storyboard Lua Integration
	Lua Execution Environment
	Asynchronous Lua Support
	Lua Debugger
	Introduction
	Configuration
	Create a Storyboard Launch Configuration
	Enable Lua Debugging
	Launch the Storyboard Application

	Debugging
	Breakpoints
	Variables
	Stepping, Continuing and Terminating

	Storyboard Lua API
	gre.SCRIPT_ROOT
	gre.set_data
	gre.get_data
	gre.set_value
	gre.get_value
	gre.send_event
	gre.send_event_target
	gre.send_event_data
	gre.receive_event
	gre.greio_disconnect
	gre.touch
	gre.key_up
	gre.key_down
	gre.key_repeat
	gre.redraw
	gre.quit
	gre.move_layer
	gre.move_control
	gre.clone_control
	gre.delete_control
	gre.get_control_attrs
	gre.set_control_attrs
	gre.get_layer_attrs
	gre.set_layer_attrs
	gre.set_layer_attrs_global
	gre.get_table_attrs
	gre.set_table_attrs
	gre.get_table_cell_attrs
	gre.get_string_size
	gre.poly_string
	gre.resolve_data_key
	gre.load_resource
	gre.load_image
	gre.dump_resource
	gre.walk_pool
	gre.timer_set_timeout
	gre.timer_set_interval
	gre.timer_clear_timeout
	gre.timer_clear_interval
	gre.thread_create
	gre.vfs_open
	gre.mstime
	gre.env
	gre.animation_create
	gre.animation_add_step
	gre.animation_destroy
	gre.animation_trigger

	Storyboard Lua DOM Module
	gredom.get_application
	gredom.get_object
	DOMOBJECT:get_name
	DOMOBJECT:get_type
	DOMOBJECT:get_parents
	DOMOBJECT:get_children
	DOMOBJECT:get_variables
	Lua DOM Samples

	Storyboard Lua Android Integration
	Storyboard Lua Android Integration
	Android Lua Java API
	Storyboard Lua Android Example

	Chapter 9. Storyboard IO
	Connecting to a Storyboard Application
	Sending Events to a Storyboard Application
	Setting Application Data
	Receiving Events from a Storyboard Application
	Storyboard IO Utilities
	iogen
	iorcv

	Storyboard IO API
	gre_io_add_mdata
	gre_io_close
	gre_io_free_buffer
	gre_io_grow_buffer
	gre_io_open
	gre_io_receive
	gre_io_send
	gre_io_send_mdata
	gre_io_serialize
	gre_io_size_buffer
	gre_io_unserialize
	gre_io_zero_buffer

	Chapter 10. Storyboard 3D Support
	3D Rendering Fundamentals
	The Scene Graph and Transformations
	Material Support
	Animation Support
	Discussion on mapping FBX Animation data into meaningful structures
	Support for Animation Takes

	Chapter 11. Optimizing Your Storyboard Application
	Choosing the Right Image Format(s)
	Frames Per Second
	Scaling Images
	Reducing Output Verbosity
	Adjusting Engine Rendering Options
	Memory
	Measuring Performance

	Chapter 12. Storyboard Software Updates
	Automatic Updates

	Part II. Storyboard Design Tutorials
	Chapter 13. Creating a Storyboard Project from a Sample
	Creating a New Application using the Storyboard Samples
	Import
	Import Sample
	New Sample Project

	Chapter 14. Working with Multiple Application Design Files
	Creating a Project
	Resolving Conflicts

	Chapter 15. Creating a 3D Model Application
	Chapter 16. Creating a Multi-Touch Application
	Chapter 17. Adding Extra Libraries for Android
	Chapter 18. Adding Extra Libraries for iOS
	Chapter 19. Crank Public SVN
	Chapter 20. Exporting a Storyboard Project
	Chapter 21. Importing a Storyboard Project

	Part III. Storyboard Target Tutorials
	Chapter 22. Linux
	TI AM355 Starter Kit
	Step 1: Importing A Storyboard Sample
	Step 2: Exporting A Storyboard Application
	Step 3: Selecting The Storyboard Embedded Engine
	Step 4: Configuring The Target Platform
	Step 5: Running The Storyboard Application

	Part IV. Release Notes
	Chapter 23. Release Notes 4.0
	Introduction
	Storyboard Designer
	Changes
	Eclipse 4.x Update
	Lua Editor Updates
	Control Rotation
	Relaxed Naming Conventions

	Known Issues
	Error When Updating or Installing Plugins
	Require Mac OS X 10.8 or greater
	Resource Cleanup tool

	Storyboard Engine
	Changes
	Asynchronous Lua scripts
	Control Groups
	Scrolling Layers
	Layer Attributes
	Circles and Arcs
	QNX 6.6 Screen
	Freetype Font Update
	Green Hills Integrity
	9-patch Image Support

	Known Issues
	Windows 8
	iOS 8.x

	Chapter 24. Release Notes 4.1
	Introduction
	Storyboard Designer
	Changes
	Animation Timeline Editing Enhancements
	Application View Enhancements
	Properties View Enhancements
	Highlighting Groups
	Update PSD Workflow (aka PSD merge, update and sync)
	Color Picker Overhaul

	Known Issues
	Error When Updating or Installing Plugins
	Require Mac OS X 10.8 or greater
	Resource Cleanup tool

	Storyboard Engine
	Changes
	Windows Multi-Touch and Gesture Support
	Gesture Plugin

	Known Issues
	Windows 8
	iOS 8.x

	Chapter 25. Release Notes 4.2
	Introduction
	Storyboard Designer
	Changes
	New Installer
	3D Multi-Mesh Model Support via Autodesk FBX Content Importing
	3D Diagnostic Output
	Storyboard Designer Animation Preview
	Animation Snapshots
	Designer Group Template Support
	9-Patch Image Editing and Refactoring
	Integrated Search and Property Editing
	Android MultiTouch Support
	Re-order Screen Layout
	Copy/Paste Layers
	PSD Re-import Update

	Known Issues
	Require Mac OS X 10.8 or greater
	Resource Cleanup tool
	3D Model's Axis

	Storyboard Embedded Engine
	Changes
	Simplified Data Access
	Multitouch

	Known Issues
	Texture Memory
	3D Layer Rotation
	9-Patch
	Android
	Cloned Control
	3D Models
	Linux Wayland Runtimes
	Flickering Graphics

	Chapter 26. Release Notes 4.2.1
	Introduction
	Storyboard Designer
	Changes
	Resize Dialog
	Designer Scroll bars
	Lua Debugger
	Designer Default Memory

	Known Issues
	Require Mac OS X 10.8 or greater
	Resource Cleanup tool
	3D Model's Axis

	Storyboard Embedded Engine
	Changes
	Performance
	Memory Management
	General Bug Fixes

	Known Issues
	Texture Memory
	3D Layer Rotation
	9-Patch
	Linux Wayland Runtimes
	Flickering Graphics

	Part V. Licensing
	Chapter 27. END-USER LICENSE AGREEMENT
	Chapter 28. Crank Software Third Party License Guide
	Introduction
	Storyboard Designer
	Lightweight Java Game Library

	Storyboard Engine
	Lua
	SOIL
	Option Parsing
	XML Parsing
	Imagination OpenGL libraries
	FreeType library
	Scanline edge-flag algorithm for antialiasing
	General IFF format
	GNU LESSER GENERAL PUBLIC LICENSE

	Storyboard Engine Platform Specific Dependencies
	All Simple Direct Media Layer (SDL) renderers
	SDL

	All Simple Direct Media Layer (SDL), OpenGL ES 2.0, and Fujitsu Jade renderers.
	zlib

	Fonts
	Bitstream Vera
	Bitstream Deja Vu
	Liberation
	Roboto
	Lato

