
Choosing The Correct 
Hardware Platform For 

Embedded GUI Applications

Best Practices Using Storyboard™
Vol. 1



Selecting your Applications Hardware Platform 1

The three considerations for optimal embedded GUI hardware selection  .  .  .  .2

Determine Performance Requirements 3

Test to understand potential hardware performance   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

Test GUI samples live on your hardware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4

Understand performance benchmarks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5

Measure application performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

Evaluate application performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .9

Measure the system load  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12

Determine your graphics acceleration requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14

Estimating System Memory Needs 17

Display resolution and framebuffers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .18

Formula for calculating framebuffer memory requirements for different display  

resolutions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19

Visual assets (fonts and images)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .20

Calculating memory usage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .23

Estimating Storage Requirements 25

Calculating the GUI application storage requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26

How to decrease storage requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .28

Best Practices Using Storyboard™ — Vol. 1



Selecting your Applications 
Hardware Platform
When building an embedded system there are many choices you will face 
when deciding the correct hardware and software combinations to best 
get your product to market. Hardware capabilities, performance, power 
requirements, memory types, OS implications, packaging options, platform 
scalability and interoperability are just some of  the considerations you 
will have to work through in the early stages. Most of  these decisions can 
be answered with research, testing, and peer discussion. When it comes 
to your GUI application however, we’re committed to ensuring that it is 
created using all the best practice principles our customers have learnt 
along the way.

In this Best Practices Using Storyboard guide, our goal is to ensure your 
Storyboard application is created from the onset with these best practices 
in mind, and optimized for the hardware platform you’ve chosen. As a 

Best Practices Using Storyboard™ — Vol. 1

1



platform-agnostic framework, Storyboard can be used to build applications 
on a wide range of  hardware platforms, and as such, your decision to use 
Storyboard should not influence which hardware you finally select. 

Nevertheless, it’s critical that you understand the changing landscape of  
the MCU and MPU market, their capabilities and OS implications. In 
this document, you will learn the questions you need to consider when 
assessing your embedded UI potential against your desired user experience.

The three considerations for optimal 
embedded GUI hardware selection

Embedded systems designers typically have three areas of  consideration 
they must break down and understand when trying to decide which 
hardware platform suits their embedded GUI requirements: They include:

1. Is the platform powerful enough to run the GUI?
2. Does the system have the memory it needs?
3. What will be the inevitable overall storage requirements?

Once you have satisfactory answers, you’ll be in a better position to ensure 
you select the most suitable hardware. You’ll also feel confident in reassuring 
other team members that the platform selected is capable of  achieving your 
end goal: a brilliant user experience on your embedded device.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

2

https://www.cranksoftware.com/platforms/our-compatibility


Determine Performance 
Requirements

Test to understand potential hardware 
performance 

One of  the first aspects you should address when striving to make a device 
with a great user experience is determining if  the system being evaluated is 
powerful enough to render the graphics needed while still performing all the 
other tasks the system needs. Over the years we have seen many embedded 
project teams that encountered issues due to assumptions that they had a 
system with the horsepower they required. When it’s late in the development 
cycle, you may end up having to make compromises in design in order to meet 
deadlines and therefore risk going to market with an inferior product.

Best Practices Using Storyboard™ — Vol. 1

3



As a first step, it’s generally best to get a feeling for the capabilities of  the 
hardware you’re considering. Since Storyboard is platform-agnostic, you 
can run the same embedded application across multiple platforms to test 
the experience live and gather metrics to aid in your decision.

Test GUI samples live on your hardware

To help you get a visual understanding of  the capabilities of  the various 
hardware platforms, our own development team has included a number of  
sample GUI applications within Storyboard and others within a public SVN 
repository, specifically built and optimized for unique hardware models, 
for you to download and try.  Once you’ve found a suitable application you 
can run it on your hardware to see how it performs and behaves. Doing 
this will allow you to obtain a better understanding of  what the platform is 

As a cross-platform framework for embedded UI development, Storyboard works with MCUs and 
MPUs on multiple hardware platforms . Download free interactive UI samples for your hardware 
from cranksoftware .com/platforms/demo-images .

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

4

https://www.cranksoftware.com/platforms/demo-images


capable of  with minimal effort. If  you are considering a range of  hardware 
platforms, this step should help you narrow your hardware choices to a 
select few from which you can start creating some more test cases specific 
to the requirements of  your final product. 

Ideally, you can find a demo image that matches or is close to your 
hardware platform since this will provide you with the easiest path forward. 
Our demo images are SD card images or binaries that can be deployed 
straight to the hardware. They are also configured to allow easy deployment 
and testing via SCP transfer so you can quickly drop new applications onto 
the hardware for your evaluation process.

Understand performance benchmarks 

Once you have a general idea of  what your hardware is capable of, the 
next step should be to create some realistic benchmarks tailored to your 
embedded project. The goal of  this isn’t to build a production-ready 
application, but to pick a handful of  UI elements that you envision 
being resource intensive. This way, you’ll see how they run on the 
hardware and gather additional system metrics to further influence your 
hardware selection.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

5



For example, consider a smartwatch or a fitness tracker. There are plenty 
of  display modes that display static information or data with lower update 
intervals. However scrolling menu lists or the plotting of  “vitals” data 
might be more resource-intensive, and therefore great candidates for 
building some targeted benchmarks around. This way you can make sure 
that your system has the resources it needs to run any critical tasks in the 
background, while still providing smooth UI interactions and performance 
for the user.

Pro Tip: Use scrolling content to benchmark performance
Scrolling content is a great benchmark for testing performance. It impacts a larger 
portion of  the display and requires constant performance to maintain smooth 
movement (more pixels to be redrawn means more CPU usage time). Plus any delays in 
movement / motion will show up quickly when performing the dragging movement of  
the scrolling content. 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

6

Even with low-frequency devices, like wearable devices, consumers expect strong user 
experiences . Benchmarks focused on resource-intensive elements of the design can help ensure 
smooth UI interactions and performance .



Where to start when building a test case or 
benchmark?

Here are some recommended resources you should 
consider when building a test case or benchmark for 
the hardware you are considering .

Import sample project from Storyboard sample

These snippets are designed to demonstrate how to use features of 

Storyboard including render extensions, actions, animations, or other 

visual effects .   LEARN MORE  

Import sample project from public SVN

Access to additional samples that might not be included with your 

installation of Storyboard .   LEARN MORE  

Download a sample Storyboard GUI demo images

Ready made sample UI applications for the popular hardware platforms to 

download and flash it straight to your board .   LEARN MORE  

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

7

https://support.cranksoftware.com/hc/en-us/articles/360039998312-New-Project-from-a-Storyboard-Sample
https://support.cranksoftware.com/hc/en-us/articles/360040411331-Importing-Sample-Projects-from-Crank-s-Public-SVN
https://www.cranksoftware.com/platforms/demo-images


Measure application performance

Measuring performance of  your GUI application is an important next step 
in the hardware evaluation process because it provides real data to back up 
any assumptions, and provides more quantitative data on which to make final 
decisions. When doing this there you will want to answer three questions:

1. How is the Storyboard GUI application performing?
2. What’s the load on the system?
3. How much, if  any, hardware acceleration is required?

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

8

Capture performance logs and metrics, including redraw times and loading times, with a push of 
a button within Storyboard, speeding up the process of measuring application performance .



Evaluate application performance

When you begin to interact with the Storyboard application, you begin to 
develop a sense of  the performance based on how the UI feels and reacts. 

• Are animations smooth and snappy? 
• Is scrolling stutter-free and locked to my finger? 
• Does the UI react quickly to my input? 

Assessing these criteria will help you start to understand the impact of  
these interactions on the app performance. Generally, the cause of  any 
poor performance can be boiled down to two keys aspects: 

• rendering time (a major influencer on framerates), and 
• response time (how quickly the UI can react to events).

Pro Tip: Use of partial or full transparency in images
One of  the key performance issues related to image rendering and composition is the 
use of  full or partial transparency. Large areas of  full transparency can result in many 
CPU or GPU cycles consumed needlessly traversing pixel areas. Similarly images that are 
fully opaque but in a format that indicates they may have some level of  per pixel level 
transparency can be optimized at design into a different format.

 

 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

9

The image bank_angle.png shown on the right uses dimensions that match the display 
size of the cockpit application which unnecessarily uses large areas of full transparency 
which results in a negative impact on performance . 



With the performance logging, Storyboard provides the tools to assist 
in getting greater visibility into the causation of  performance issues. 
The Storyboard engine has instrumentation in place that, when enabled, 
provides a detailed breakdown of  the event flow and the associated timing 
for each action that is executed. Data metrics from the log can also be 
plotted in graphical form, allowing you to easily spot problem areas in need 
of  optimization.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

10

Graphical representation of data captured within Storyboard’s performance logs makes it easier 
to identify the valuable insight required for making smart UI design choices that do not impact the 
user experience .



Where to start with determining Storyboard 
application performance?

Here are some recommended resources you should 
consider when looking to leverage Storyboard’s built-
in performance tools .

Creating and importing a performance log

A video explaining the available command line options and demonstrating how 

to add the logging command line option to sbengine .   LEARN MORE  

Visualizing Storyboard’s performance logs in a graphical format

Details on how to provide context to the captured record tracing being 

performed within the Storyboard engine .   LEARN MORE  

With the ability to gather data on the application’s performance, you can 
start to look at the performance of  the system as a whole. Since your 
Storyboard application needs to run in conjunction with other platform 
systems you should ensure that there are extra system resources available. 
With the techniques described above you should be able to run some 
tests to benchmark how your system performs with multiple applications 
running at the same time. If  you aren’t happy with the overall performance, 
you can then make adjustments to the UI implementation, design and other 
applications running on your system.

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

11

https://support.cranksoftware.com/hc/en-us/articles/360045094952-VIDEO-Creating-and-Importing-a-Performance-Log
https://support.cranksoftware.com/hc/en-us/articles/360040893211-Storyboard-Performance-Log-Viewer


Measure the system load

Once you are satisfied with the GUI and hardware performance benchmarks, 
it’s time to look at the system as a whole. This will enable you to understand 
how the rest of  your software will fit alongside your device’s GUI 
application. While this tends to be specific to the hardware and operating 
system (OS) selection, the general goal is to gauge CPU usage. Most OS’ will 
provide tooling to help you measure the total amount of  CPU cycles used, 
and which processes or tasks are responsible for that system draw. 

For example, if  you are running Linux, you have access to the top utility. 
Or if  you are running QNX, there are different options available to you in 
the Momentics tool suite. The same applies to the real time executives like 
FreeRTOS. Your software and compiler choice will determine the specific 
tooling solutions available to you.

Regardless of  the platform tooling you use to assess system load, your end 
goal is to be in a position where your GUI and other application tasks can 
all run concurrently at the performance levels you require.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

12



Where to start when measuring system 
performance?

Here are some recommended resources you should 
consider when leveraging Storyboard to help measure 
the performance of your hardware .

Using real-time insight from Storyboard and Percepio to enhanced UI 

development

This webinar demonstrates how Storyboard along with Percepio’s 

Tracealyzer can be used for common scenarios in UI performance analysis 

and optimization .   LEARN MORE  

Building Embedded GUIs for MCUs versus MPUs

This video discusses the differences in developing GUI applications for MCUs 

vs . MPUs and what to consider when evaluating embedded hardware options .

  LEARN MORE  

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

13

https://info.cranksoftware.com/resources/webinar/webinar-creating-exceptional-uis-on-nxp-through-real-time-behavioral-insight-gained-with-percepio
https://support.cranksoftware.com/hc/en-us/articles/360045470512-VIDEO-Building-Embedded-GUIs-for-MCUs-versus-MPUs


Determine your graphics acceleration requirements

Storyboard lets you choose how you want to render graphics, from 
writing directly into the framebuffer to taking advantage of  any 2D or 3D 
hardware rendering available on the board.

The addition of  some form of  hardware acceleration can help offset your 
CPU usage since graphic-based tasks, normally handled by the CPU, can 
be offloaded to the graphics processing unit (GPU). This hand-off  of  
graphics processing will free up your CPU for other system tasks while 
providing a boost in performance. However, if  your chosen hardware 
doesn’t have an on-board GPU you can still leverage Storyboard’s support 
for software rendering to use the CPU to draw content on the screen. 

Should you select a platform with a GPU built-in, Storyboard supports a 
wide range of  render engines from ChromeART (DMA2D) to OpenGL 
and many other choices in between. But be aware that with GPUs you will 
require more power from your device. For battery powered devices, this 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

14

QSPI

Hardware
Layers

3D GPU

Software
Renderer

2D
Optimized

Multi-Core

MCU

MPU

Storyboard’s unique architecture allows it to be compatible with MCUs, crossover processors and 
MPUs, and a wide range of graphic rendering technologies, providing the freedom to choose the 
best hardware the embedded product . 

https://www.cranksoftware.com/platforms/rendering-technologies
https://www.cranksoftware.com/platforms/rendering-technologies


should be carefully considered as you will want to ensure maximum battery 
life while still getting the best UI performance possible. In this case a GPU 
may or may not make sense for your product.

It is not necessary to have a GPU if  your GUI application consists of  only 
2D images. It is really only necessary to add hardware acceleration when 
you have 3D content, or when you notice your graphics are struggling 
during rendering. 

Many of  the available platforms come with two runtime versions; 
OpenGL and Software Renderer. If  you aren’t sure which runtime is best 
for the application, you can experiment on both and then compare the 
performance and resource consumption. Performing this extra step might 
uncover the fact you can get away without the OpenGL hardware after 
all, saving you on additional hardware costs (and extending the life of  that 
battery-powered device).

If  you find you require acceleration, or have screens with a mix of  3D and 
2D content, look for a hardware platform that offers different tiers of  
GPU inside. In instances where this occurs, Storyboard’s Hybrid Rendering 
functionality can be leveraged here, providing the ability for the GUI to 
automatically toggle between 2D and 3D GPU rendering on the fly, while 
conserving power consumption.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

15

https://www.cranksoftware.com/crank-software-wins-prestigious-embedded-award-for-ui-development-software


How to enhance UI applications with 3D content?

Here are some recommended resources to provide 
a better understanding of how you can leverage the 
capabilities of hardware acceleration to help elevate 
your UI .

Learning Storyboard 3D rendering fundamentals

Understanding the underlying concepts to help with making informed 

decisions when configuring 3D Model render extensions in Storyboard 

Designer .   LEARN MORE  

How to create a 3D model application in Storyboard

A tutorial showing how to use the 3D Model Control with a new 

Storyboard project .   LEARN MORE  

Working with OpenGL shaders to display 3D model objects

Leveraging OpenGL hardware to transform model elements, create custom 

GLSL shader effects and to display 3D model objects .   LEARN MORE  

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

16

https://support.cranksoftware.com/hc/en-us/articles/360040408991-3D-Rendering-Fundamentals
https://support.cranksoftware.com/hc/en-us/articles/360040001352-Creating-a-3D-Model-Application
https://support.cranksoftware.com/hc/en-us/articles/360039998992-Working-with-OpenGL-Shaders-Transforms-and-Compressed-Textures


Estimating System Memory Needs
Now that you have gauged the expectation of  the CPU and GPU, the 
next step is to understand how much memory your GUI application will 
require. Similar to how important it is to understand how much processing 
power your product requires, it is equally important to be aware of  the 
amount of  memory needed. Too little and you’ll find that you will have to 
make design concessions. Too much and your bill of  materials cost will be 
unnecessarily high. 

When it comes to determining the amount of  required memory there are 
four items to consider:

1. Display resolution
2. Buffering
3. Fonts
4. Number of  images
5. Location of  where images will be loaded from

Best Practices Using Storyboard™ — Vol. 1

17



Display resolution and framebuffers

In embedded devices, framebuffers are a contiguous block of  memory 
that contain the colour data for each pixel of  the display’s resolution. 
A minimum of  one framebuffer is required to display graphics to the 
device’s screen. The display resolution and configuration (colour depth) will 
determine how much memory you require to allocate for your buffer(s).

In general, most framebuffers use either full 32- or 16-bit color depths 
for a higher color depth equates to a more visually appealing image. To 
determine how much memory is required for the framebuffer, you would 
need to multiply the display resolution by the required color depth. Since it 
would most likely be 32- or 16-bit color you can multiply the pixels by 4 or 2, 
respectively, to learn how many bytes of  total space are required. 

16-bit (RGB565) color means you will have a reduced spectrum of  color 
and lack an alpha channel support. It’s important to note that the color 
depth used needs to align with what the LCD display supports. You can 
use your desired colour fidelity to help select a compatible display or have 
the determine your framebuffer configuration.

Pro Tip: 16-bit color for MCUs
In general, the only time 16-bit color is noticeable to the human eye is in gradients where 
an effect called banding can show up. Most MCU systems use this color space since it 
reduces the required memory footprint in half, yet still provides good visual quality for 
the user.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

18



Formula for calculating framebuffer memory 
requirements for different display resolutions

While one framebuffer is required for graphics, for fluid animations and 
smooth blending within GUI applications, it is recommended you have 
two framebuffers. Two buffers can also help avoid a visual effect known as 
“tearing” where a display device shows information from multiple frames 
in a single screen at the same time causing the image to look like it is torn. 
By using two framebuffers instead, the display reads from one buffer while 
the engine writes to the other. When the frame is done, Storyboard then 
flips the buffer it is writing to and tells the display to read from the buffer 
which is no longer being written to. Having two framebuffers doubles 
the amount of  memory you require to support the graphic rendering 
of  your GUI application but it can improve visual fidelity and improve 
performance.

For example, the resolution of  480 pixels wide by 272 pixels high, using 
a 32-bit color gamut would need 522,240 Bytes x 2 = 1,044,480 Bytes 
~1.044 Megabytes.

Framebuffer Memory Required = Display Resolution x Bit Color 
Quotient (4 = for 32-Bits, 2 = 16-Bits) 

Example Worksheet For 480 x 272 Display:

32-Bit memory calculation
(480 x 272) x 4 = 522,240 Bytes 

~522 Kilobytes framebuffer memory required

16-Bit memory calculation
(480 x 272) x 2 = 261,120 Bytes 

~261 Kilobytes framebuffer memory required

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

19



Framebuffers can be configured in other ways than the double buffering 
method (also referred to as page flipping) that was just discussed. In cases 
where a double framebuffer is required, but the hardware can’t support 
the flipping of  buffers, Storyboard supports a uniquely designed version 
of  double framebuffer called “back buffering”. With back buffering two 
framebuffers are still utilized; however, instead of  flipping between the 
two buffers with backbuffers the information is written to a buffer in the 
background (i.e. the backbuffer) and then copied to the front buffer from 
which the screen displays from. 

If  memory is not an issue with the hardware you have selected, there 
is a buffer configuration known as triple buffering. Triple buffering is 
a combination of  page flipping and backbuffering that leverages two 
“backbuffers” as page flips to minimize latency between copying content 
between the back buffer(s) and the front buffer. 

Regardless of  which buffer technique that you choose to use in your 
embedded device, the Storyboard engine supports all standard buffer 
configurations enabling your UI to be optimized for your chosen hardware.

Visual assets (fonts and images)

Storyboard will do it’s best to minimize resource consumption; however, 
it’s important to understand that the visual complexity of  your application 
will impact your memory consumption. 

When it comes to visual complexity, the biggest factors that impact 
memory are your images and fonts. Both these assets need to be loaded 
(in some cases decompressed) from the file system into RAM, then 
composited together with other content, and finally written to the 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

20



framebuffer. By default, Storyboard will cache images and font glyphs in 
order to improve rendering performance the next time the asset needs to 
be redrawn. However, that performance boost does come at the cost in 
terms of  total consumed memory which will need to be accounted for. 
Plus, for those images that start off  as a compressed file once they are 
decompressed this will add to the total consumed memory as well. 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

21

Storyboard’s Metrics View shows you how much memory and storage will be used by the 
resources within your embedded application, and will help you save and redefine your touch 
optimized UI where needed .



For example, you might have a background image that is the entire size of  
your display (480 x 272) with a file system size showing ~90kb. Calculating 
the cost of  this is similar to determining the cost of  a framebuffer (width x 
height x color depth). When you consider how many images are being used 
to make up your UI, it is easy to see how this can quickly add up.

When it comes to fonts, while they are different from images, they too can 
have a sizable impact on the consumption of  memory. This is because, 
with fonts, each font file contains the total definition of  each and every 
glyph in the supported character set. When it comes to displaying the text 
on the screen, Storyboard will parse the string of  characters and generate 
the required glyphs for each character required. These glyphs are based on 
the point size and style of  the font and will be cached by Storyboard for 
rendering optimization purposes. So, if  your text content is dynamic, or 
if  you have multiple styles of  fonts, or different font sizes to display at a 
single time then you’ll be caching for each option and end up accumulating 
a large cache of  glyphs.

By default the engine doesn’t limit the amount of  memory you can use 
to cache resources, as Storyboard will favor performance when resources 
are available. However, if  you are running closer to the limit of  what 
your system has for memory then you can always set limits to how much 
memory you can allocate for resource caching. Therefore if  you should 
reach this defined upper limit, the Storyboard engine will release assets 
based on their frequency of  use in order to make room for new visual 
assets that need to be rendered.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

22



Calculating memory usage

Knowing how to calculate the memory usage of  a particular resource is 
useful for it can guide in the making of  smarter, more efficient GUI design 
and development choices. To make this easy, Storyboard’s Metrics View 
panel keeps track of  the resource requirements of  your application. Within, 
you can get a breakdown of  what you might expect the usage to be, based 
on the layout of  the application. You can also create a resource export 
configuration that can be the basis of  these calculations since the format 
in which you choose to store your assets will affect how the impact system 
memory. An excellent example of  this is if  your system support is after 
storing your application in Flash memory. You can configure Storyboard 
to export your images in flash memory uncompressed and then draw them 
directly from this location. This bypasses the need to decode a compressed 
image (jpg or png) into RAM and can save you resources and, in some 
cases, improve performance. To learn more about this, please refer to the 
following Crank Software support article. 

However, not all aspects of  the Storyboard built UI are displayed within 
the Metrics View panel.  Lua scripting and dynamic behavior items, like 
animations, are outside the estimation scope provided by the Metrics View. 
It will still provide a pretty close estimation of  the memory consumption, 
enabling a decent estimate of  your memory requirements.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

23

https://support.cranksoftware.com/hc/en-us/articles/360040408451-Storyboard-Resource-Export-Configuration-Editor


How to determine general memory consumption?

Here is a recommended resource to provide a better 
understanding of how to measure memory usage in 
Storyboard .

Estimating UI memory and storage size

A video explaining where to access Storyboard’s Metrics View, how to 

change the storage type, and preview the image footprint .   LEARN MORE  

Storyboard Engine plugins

This document provides a complete list of plugins that can be used, such as 

reporting on process / task memory usage or heap allocator memory usage 

values in performance log metrics .   LEARN MORE  

Managing Storyboard engines resource memory

Ways to help fine tune the amount of memory used by sbengine to load 

assets that the application requires, such as images, fonts, scripts, etc .

  LEARN MORE  

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

24

https://support.cranksoftware.com/hc/en-us/articles/360044677652-VIDEO-Estimating-UI-memory-and-storage-size
https://support.cranksoftware.com/hc/en-us/articles/360040000752-Storyboard-Engine-Plugin-Options
https://support.cranksoftware.com/hc/en-us/articles/360040409391-Managing-Resource-Memory


Estimating Storage Requirements
Understanding the storage requirements of  your product will depend on 
several different aspects. Some of  these, like graphical asset space and 
binary sizes, can be accounted for within the Metrics View tool mentioned 
in the section ‘Measure application performance’. Other requirements, such 
as the size of  the OS and other system dependencies, need to be accounted 
for manually to provide an all-encompassing view of  the entire system.

It is important to understand that the hardware platform you are 
considering can limit the storage available for your GUI application. 
Even if  the platform can support expandable memory, this will come at 
a cost to the bill of  materials or the physical footprint of  your device. By 
understanding the storage requirements of  your application, you will be 
able to ensure you have the right amount of  storage space on your device.

Best Practices Using Storyboard™ — Vol. 1

25



Calculating the GUI application storage 
requirements

When calculating your filesystem requirements, there are two parts to your 
Storyboard GUI application: 

1. Storyboard runtime engine 
2. Storyboard application

The runtime is the binary portion of  the Storyboard application and is 
fairly easy to calculate since it directly corresponds to the runtime package 
(hardware and Operating System type) you deploy to your system. On a 
Linux system, for instance, you’ll deploy an archive that contains binary 
executables, made up of  libraries and loadable plugins. The filesystem cost 
is simply the total size of  this archive. 

When looking at the Storyboard application, the same generally applies 
in the manner that you will deploy an application model file with the UI 
resources to your system. When deploying to an operating system, such 
as Linux or QNX, you can take the total size of  your deployable project 
directory and use that as a benchmark. In fact, our Metrics View capability 
in Storyboard Designer will attempt to calculate this information for you 
(including memory). 

While in many cases, the GUI application will make up the largest portion 
of  the total filesystem footprint, due to the size of  its graphical assets, 
you should also consider the dependencies of  other aspects of  your 
embedded device, such as its Operating System (OS). The OS and non-
graphical applications will all require space. Therefore it is important that 
you are aware of  what your base system image requirements are before the 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

26



Storyboard application and runtimes are added to the system. While these 
requirements will be highly specific to your configuration, they are essential 
in understanding what you will require in order to boot your hardware. 

For example, if  your Linux image requires 1.7GB of  space on an SD card, 
then it would make sense to select a card with more than 2GB of  space. 

The same logic applies when you are flashing an MCU system. When 
building and flashing FreeRTOS, most of  the tooling solutions will provide 
metrics on the size of  the compiled binary being written to Flash memory. 
Whenever possible, it is best to give yourself  a buffer in storage space since 
we know that change and iterations are inevitable in any embedded project. 
Therefore, it is always better to have a little bit more room so you can 
experiment with different concepts and future feature additions instead of  
being constrained by a hardware limitation.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

27

Storyboard’s Resource Export Configuration editor allows for the creation, deletion, and resetting 
of a configuration . This allows for fine grained control over how and when resources should be 
exported from the design environment . 



How to decrease storage requirements

If  the application is running on an OS without a traditional filesystem (for 
example, like most realtime executives running out of  Flash memory on an 
MCU), there are some options available to help reduce the footprint: 

1. Remove non-required duplicated images from the GUI

Ensure that you’ve consolidated any potential duplicate images and 
converted any solid color images to “Fill” render extensions using the 
consolidation tools outlined in Storyboard Documentation. This will 
ensure maximum efficiency and not waste space with duplicate images or 
flat colors that could be rendered programmatically. 

2. Use of 9-Patch for scalable bitmap images

9-Patch is a technique used to scale an image in such a way that the four 
corners remain unscaled. You can quickly analyze and convert existing large 
or scaled image content to 9-Patch format to achieve immediate memory 
and runtime performance improvements. In order to be converted to 
9-Patch, the source image must have full 32-bit color depth.

3. Use only the plugins required for your GUI development

By default, sbengine uses as much memory as it requires to load all the 
assets that the application requires (images, fonts, scripts, etc.), but this can 
be tuned to save memory by removing any unused plugins from the plugins 
directory. The plugins that are available and being loaded will be shown by 
passing the -i option to the sbengine command-line utility.

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

28



4. Create a resource export configuration for your hardware

By default, the resource export configuration will assume a standard file 
system deployment (SD card with partitions and a filesystem like FAT or 
EXT4, etc.), from which you can tailor how to store the assets. If  there 
is ample storage space, it is suggested that image assets are stored raw on 
Flash. Storyboard can render them directly from Flash memory without 
the need to decode them into RAM first. The big caveat here is that 
uncompressed images are bigger in size, therefore, requiring more storage 
space. Their size is directly proportional to their resolution multiplied by 
the color depth. 

Pro Tip: Storyboard Metrics View updates with changes
When you play around with your settings you will notice the Metrics View updating 
with Storyboards estimate for space required in Flash vs Ram. Since Flash is generally 
cheaper than RAM, most systems include more of  it. This results in many configurations 
weighted towards maximizing Flash storage in order to save on RAM. 

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

29



How to determine storage requirements?

Here is a recommended resource to provide a better 
understanding of how to measure memory usage in 
Storyboard .

Storyboard Resource Export Configuration Editor 

This document provides details on Storyboard Resource Export Configuration 

editor which allows for fine grained control over how and when resources 

should be exported from the design environment .   LEARN MORE  

Utilities to efficiently develop your embedded user interface

This document discusses features that can improve performance by reducing 

potential runtime inefficiencies and speed application development through 

greater insight into an existing application’s user interface .   LEARN MORE  

Setting up Storyboard Engine

This document reviews configuring the target system for Storyboard Engine 

(sbengine) and plugins required for the target application .   LEARN MORE  

RESOURCES

Choosing the correct hardware platform for embedded GUI applications

Best Practices Using Storyboard™ — Vol. 1

30

https://support.cranksoftware.com/hc/en-us/articles/360040408451-Storyboard-Resource-Export-Configuration-Editor
https://support.cranksoftware.com/hc/en-us/articles/360040408491-Storyboard-Designer-Utilities
https://support.cranksoftware.com/hc/en-us/articles/360039999232-Setting-up-Storyboard-Engine


Conclusion
With some predetermined hardware performance testing and careful 
considerations during the early stages of  the selection process, you can make 
educated decisions and select the most suited hardware for your embedded 
device. Following these guidelines can help you avoid making product 
compromises related to hardware limitations, costly hardware respins, or 
platform reselection that could put the project at risk of  meeting deadlines.

Regardless of  whether the final hardware choice is an MCU or MPU, you 
should now have a better understanding of  how your decisions could 
impact your device’s GUI application design (or vice versa). Through the 
use of  pre-built Storyboard GUI demo applications, built-in performance 
metrics, and logging tools, you will be able to quickly gather data on 
system performance and application resources enabling you to make some 
educated decisions in hardware and GUI design.

Now go forward with confidence that your hardware platform can support 
the stunning, graphical user interface developed to enhance the user 
experience of  your embedded device!

Best Practices Using Storyboard™ — Vol. 1

31


	Selecting your Applications Hardware Platform
	The three considerations for optimal embedded GUI hardware selection
	Determine Performance Requirements
	Test to understand potential hardware performance 
	Test GUI samples live on your hardware
	Understand performance benchmarks 

	Measure application performance
	Evaluate application performance
	Measure the system load
	Determine your graphics acceleration requirements


	Estimating System Memory Needs
	Display resolution and framebuffers
	Formula for calculating framebuffer memory requirements for different display resolutions

	Visual assets (fonts and images)
	Calculating memory usage

	Estimating Storage Requirements
	Calculating the GUI application storage requirements
	How to decrease storage requirements



